氮/磷共掺超微孔硬质碳球用于快速储存钠

IF 10.5 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Sheng Wu , Handong Peng , Junling Xu , Le Huang , Yongsi Liu , Xiaocheng Xu , Yanxue Wu , Zhipeng Sun
{"title":"氮/磷共掺超微孔硬质碳球用于快速储存钠","authors":"Sheng Wu ,&nbsp;Handong Peng ,&nbsp;Junling Xu ,&nbsp;Le Huang ,&nbsp;Yongsi Liu ,&nbsp;Xiaocheng Xu ,&nbsp;Yanxue Wu ,&nbsp;Zhipeng Sun","doi":"10.1016/j.carbon.2023.118756","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>Hard carbon (HC) is a prospective energy storage anode material in sodium-ion batteries (SIBs). However, their unimpressive rate capability and poor initial Coulombic efficiency (ICE) have driven the requirements for superior capability </span>HC anode materials. In our work, nitrogen (N)/phosphorus (P) co-doped ultramicropores (≈0.5 nm) hard carbon spheres (NPUCS) with the boosted pyridinic-N content are successfully prepared. The ultramicropores structure (&lt;0.7 nm) effectively prevents the electrolyte from contacting the </span>carbon surface but allows the rapid diffusion of Na</span><sup>+</sup><span><span> in the carbon layer, leading to high-efficiency </span>sodium storage. Pyridinic-N has the highest reactivity, and could significantly promote the Na</span><sup>+</sup> adsorption in HC. The NPUCS exhibits an excellent rate capability, providing capacities of 257.7 and 157.0 mA h g<sup>−1</sup> at 0.1 and 5.0 A g<sup>−1</sup><span> along with a high ICE to 75 %. Furthermore, when integrated into a full battery<span> configuration, the prepared full battery displays a high energy density to 135.9 Wh kg</span></span><sup>−1</sup> at 0.1 A g<sup>−1</sup> with long-time stability (350 cycles at 0.2 A g<sup>−1</sup>). These excellent electrochemical behaviors highlight the potential of our approach for the synthesis of advanced HC anode for SIBs.</p></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"218 ","pages":"Article 118756"},"PeriodicalIF":10.5000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen/phosphorus co-doped ultramicropores hard carbon spheres for rapid sodium storage\",\"authors\":\"Sheng Wu ,&nbsp;Handong Peng ,&nbsp;Junling Xu ,&nbsp;Le Huang ,&nbsp;Yongsi Liu ,&nbsp;Xiaocheng Xu ,&nbsp;Yanxue Wu ,&nbsp;Zhipeng Sun\",\"doi\":\"10.1016/j.carbon.2023.118756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><span><span>Hard carbon (HC) is a prospective energy storage anode material in sodium-ion batteries (SIBs). However, their unimpressive rate capability and poor initial Coulombic efficiency (ICE) have driven the requirements for superior capability </span>HC anode materials. In our work, nitrogen (N)/phosphorus (P) co-doped ultramicropores (≈0.5 nm) hard carbon spheres (NPUCS) with the boosted pyridinic-N content are successfully prepared. The ultramicropores structure (&lt;0.7 nm) effectively prevents the electrolyte from contacting the </span>carbon surface but allows the rapid diffusion of Na</span><sup>+</sup><span><span> in the carbon layer, leading to high-efficiency </span>sodium storage. Pyridinic-N has the highest reactivity, and could significantly promote the Na</span><sup>+</sup> adsorption in HC. The NPUCS exhibits an excellent rate capability, providing capacities of 257.7 and 157.0 mA h g<sup>−1</sup> at 0.1 and 5.0 A g<sup>−1</sup><span> along with a high ICE to 75 %. Furthermore, when integrated into a full battery<span> configuration, the prepared full battery displays a high energy density to 135.9 Wh kg</span></span><sup>−1</sup> at 0.1 A g<sup>−1</sup> with long-time stability (350 cycles at 0.2 A g<sup>−1</sup>). These excellent electrochemical behaviors highlight the potential of our approach for the synthesis of advanced HC anode for SIBs.</p></div>\",\"PeriodicalId\":262,\"journal\":{\"name\":\"Carbon\",\"volume\":\"218 \",\"pages\":\"Article 118756\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008622323010011\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622323010011","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

硬碳(HC)是钠离子电池(SIB)中一种前景广阔的储能阳极材料。然而,它们的速率能力并不出众,初始库仑效率(ICE)也很低,这促使人们需要性能更优越的碳氢化合物负极材料。在我们的研究中,成功制备出了氮/磷共掺杂的超微孔(≈0.5 nm)硬碳球(NPUCS),并提高了吡啶-N 的含量。超微孔结构(0.7 nm)有效地阻止了电解质与碳表面的接触,但允许 Na+ 在碳层中快速扩散,从而实现了高效钠存储。吡啶-N 的反应活性最高,可显著促进 HC 中 Na+ 的吸附。NPUCS 具有出色的速率能力,在 0.1 和 5.0 A g-1 的条件下,可提供 257.7 和 157.0 mA h g-1 的容量,并且 ICE 高达 75%。此外,当集成到全电池配置中时,制备的全电池在 0.1 A g-1 电流条件下显示出 135.9 Wh kg-1 的高能量密度和长时间稳定性(在 0.2 A g-1 电流条件下循环 350 次)。这些优异的电化学性能凸显了我们的方法在合成用于 SIB 的先进碳氢化合物阳极方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nitrogen/phosphorus co-doped ultramicropores hard carbon spheres for rapid sodium storage

Nitrogen/phosphorus co-doped ultramicropores hard carbon spheres for rapid sodium storage

Nitrogen/phosphorus co-doped ultramicropores hard carbon spheres for rapid sodium storage

Hard carbon (HC) is a prospective energy storage anode material in sodium-ion batteries (SIBs). However, their unimpressive rate capability and poor initial Coulombic efficiency (ICE) have driven the requirements for superior capability HC anode materials. In our work, nitrogen (N)/phosphorus (P) co-doped ultramicropores (≈0.5 nm) hard carbon spheres (NPUCS) with the boosted pyridinic-N content are successfully prepared. The ultramicropores structure (<0.7 nm) effectively prevents the electrolyte from contacting the carbon surface but allows the rapid diffusion of Na+ in the carbon layer, leading to high-efficiency sodium storage. Pyridinic-N has the highest reactivity, and could significantly promote the Na+ adsorption in HC. The NPUCS exhibits an excellent rate capability, providing capacities of 257.7 and 157.0 mA h g−1 at 0.1 and 5.0 A g−1 along with a high ICE to 75 %. Furthermore, when integrated into a full battery configuration, the prepared full battery displays a high energy density to 135.9 Wh kg−1 at 0.1 A g−1 with long-time stability (350 cycles at 0.2 A g−1). These excellent electrochemical behaviors highlight the potential of our approach for the synthesis of advanced HC anode for SIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon
Carbon 工程技术-材料科学:综合
CiteScore
20.80
自引率
7.30%
发文量
0
审稿时长
23 days
期刊介绍: The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信