利用吸附和膜技术去除放射性废水中的铯

IF 6.1 2区 环境科学与生态学 Q2 ENGINEERING, ENVIRONMENTAL
Shuting Zhuang, Jianlong Wang
{"title":"利用吸附和膜技术去除放射性废水中的铯","authors":"Shuting Zhuang, Jianlong Wang","doi":"10.1007/s11783-024-1798-1","DOIUrl":null,"url":null,"abstract":"<p>Radiocesium is frequently present in radioactive wastewater, while its removal is still a challenge due to its small hydrated radius, high diffusion coefficient, and similar chemical behavior to other alkali metal elements with high background concentrations. This review summarized and analyzed the recent advances in the removal of Cs<sup>+</sup> from aqueous solutions, with a particular focus on adsorption and membrane separation methods. Various inorganic, organic, and biological adsorbents have undergone assessments to determine their efficacy in the removal of cesium ions. Additionally, membrane-based separation techniques, including reverse osmosis, forward osmosis, and membrane distillation, have also shown promise in effectively separating cesium ions from radioactive wastewater. Additionally, this review summarized the main approaches, including Kurion/SARRY system + desalination system and advanced liquid processing system, implemented after the Fukushima Daiichi nuclear power plant accident in Japan to remove radionuclides from contaminated water. Adsorption technology and membrane separation technology play a vital role in treatment of contaminated water.</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cesium removal from radioactive wastewater by adsorption and membrane technology\",\"authors\":\"Shuting Zhuang, Jianlong Wang\",\"doi\":\"10.1007/s11783-024-1798-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Radiocesium is frequently present in radioactive wastewater, while its removal is still a challenge due to its small hydrated radius, high diffusion coefficient, and similar chemical behavior to other alkali metal elements with high background concentrations. This review summarized and analyzed the recent advances in the removal of Cs<sup>+</sup> from aqueous solutions, with a particular focus on adsorption and membrane separation methods. Various inorganic, organic, and biological adsorbents have undergone assessments to determine their efficacy in the removal of cesium ions. Additionally, membrane-based separation techniques, including reverse osmosis, forward osmosis, and membrane distillation, have also shown promise in effectively separating cesium ions from radioactive wastewater. Additionally, this review summarized the main approaches, including Kurion/SARRY system + desalination system and advanced liquid processing system, implemented after the Fukushima Daiichi nuclear power plant accident in Japan to remove radionuclides from contaminated water. Adsorption technology and membrane separation technology play a vital role in treatment of contaminated water.</p>\",\"PeriodicalId\":12720,\"journal\":{\"name\":\"Frontiers of Environmental Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Environmental Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11783-024-1798-1\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1798-1","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

镭经常存在于放射性废水中,但由于其水合半径小、扩散系数高,且与其他本底浓度高的碱金属元素具有相似的化学行为,因此镭的去除仍是一项挑战。本综述总结并分析了从水溶液中去除 Cs+ 的最新进展,尤其侧重于吸附和膜分离方法。对各种无机、有机和生物吸附剂进行了评估,以确定它们在去除铯离子方面的功效。此外,膜分离技术,包括反渗透、正渗透和膜蒸馏,也显示出有效分离放射性废水中铯离子的前景。此外,本综述还总结了日本福岛第一核电站事故后为去除受污染水中的放射性核素而采用的主要方法,包括 Kurion/SARRY 系统 + 海水淡化系统和高级液体处理系统。吸附技术和膜分离技术在处理受污染水方面发挥着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cesium removal from radioactive wastewater by adsorption and membrane technology

Cesium removal from radioactive wastewater by adsorption and membrane technology

Radiocesium is frequently present in radioactive wastewater, while its removal is still a challenge due to its small hydrated radius, high diffusion coefficient, and similar chemical behavior to other alkali metal elements with high background concentrations. This review summarized and analyzed the recent advances in the removal of Cs+ from aqueous solutions, with a particular focus on adsorption and membrane separation methods. Various inorganic, organic, and biological adsorbents have undergone assessments to determine their efficacy in the removal of cesium ions. Additionally, membrane-based separation techniques, including reverse osmosis, forward osmosis, and membrane distillation, have also shown promise in effectively separating cesium ions from radioactive wastewater. Additionally, this review summarized the main approaches, including Kurion/SARRY system + desalination system and advanced liquid processing system, implemented after the Fukushima Daiichi nuclear power plant accident in Japan to remove radionuclides from contaminated water. Adsorption technology and membrane separation technology play a vital role in treatment of contaminated water.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Environmental Science & Engineering
Frontiers of Environmental Science & Engineering ENGINEERING, ENVIRONMENTAL-ENVIRONMENTAL SCIENCES
CiteScore
10.90
自引率
12.50%
发文量
988
审稿时长
6.1 months
期刊介绍: Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines. FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信