Pianpian Zhang , Tingting Sun , Rong Jiang , Tianyu Zheng , Qingmei Xu , Ruanbo Hu , Xinxin Wang , Kang Wang , Lianbin Xu , Dingsheng Wang , Jianzhuang Jiang
{"title":"用于酸性和碱性介质中氧还原反应的强效不对称二原子电催化剂","authors":"Pianpian Zhang , Tingting Sun , Rong Jiang , Tianyu Zheng , Qingmei Xu , Ruanbo Hu , Xinxin Wang , Kang Wang , Lianbin Xu , Dingsheng Wang , Jianzhuang Jiang","doi":"10.1016/j.apcatb.2023.123645","DOIUrl":null,"url":null,"abstract":"<div><p><span>Herein, an asymmetric diatomic site oxygen reduction reaction (ORR) electrocatalyst with atomically dispersed Fe and Cu species co-anchored on porous nitrogen-doped polyhedra carbon was successfully prepared through a facile cooperation of post-adsorption and two-step pyrolysis method. Density functional theory (DFT) calculations reveal that the asymmetric FeCu dual atomic site experiences a symmetry destruction of electron transfer due to the existing Cu-N</span><sub>4</sub> sites and thus results in the electron redistribution in Fe<sub>SA</sub>Cu<sub>SA</sub>/NC, contributing significantly to the optimization of intermediates adsorption and acceleration of kinetics during ORR process. Attributed to the structural advantages of Fe<sub>SA</sub>-N<sub>4</sub>&Cu<sub>SA</sub>-N<sub>4</sub> sites and highly porous carbon matrix, the Fe<sub>SA</sub>Cu<sub>SA</sub>/NC catalyst exhibits excellent electrocatalytic ORR performance with half-wave potentials (<em>E</em><sub><em>1/2</em></sub>) of 0.86 and 0.88 V versus reversible hydrogen electrode in 0.1 M HClO<sub>4</sub> and 0.1 M KOH solutions as well as high durability. Moreover, Fe<sub>SA</sub>Cu<sub>SA</sub>/NC-based H<sub>2</sub>/O<sub>2</sub> fuel cell and zinc-air battery present superior performance with high peak power density.</p></div>","PeriodicalId":244,"journal":{"name":"Applied Catalysis B: Environmental","volume":null,"pages":null},"PeriodicalIF":20.2000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust asymmetric diatomic electrocatalyst for oxygen reduction reaction in both acidic and alkaline media\",\"authors\":\"Pianpian Zhang , Tingting Sun , Rong Jiang , Tianyu Zheng , Qingmei Xu , Ruanbo Hu , Xinxin Wang , Kang Wang , Lianbin Xu , Dingsheng Wang , Jianzhuang Jiang\",\"doi\":\"10.1016/j.apcatb.2023.123645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Herein, an asymmetric diatomic site oxygen reduction reaction (ORR) electrocatalyst with atomically dispersed Fe and Cu species co-anchored on porous nitrogen-doped polyhedra carbon was successfully prepared through a facile cooperation of post-adsorption and two-step pyrolysis method. Density functional theory (DFT) calculations reveal that the asymmetric FeCu dual atomic site experiences a symmetry destruction of electron transfer due to the existing Cu-N</span><sub>4</sub> sites and thus results in the electron redistribution in Fe<sub>SA</sub>Cu<sub>SA</sub>/NC, contributing significantly to the optimization of intermediates adsorption and acceleration of kinetics during ORR process. Attributed to the structural advantages of Fe<sub>SA</sub>-N<sub>4</sub>&Cu<sub>SA</sub>-N<sub>4</sub> sites and highly porous carbon matrix, the Fe<sub>SA</sub>Cu<sub>SA</sub>/NC catalyst exhibits excellent electrocatalytic ORR performance with half-wave potentials (<em>E</em><sub><em>1/2</em></sub>) of 0.86 and 0.88 V versus reversible hydrogen electrode in 0.1 M HClO<sub>4</sub> and 0.1 M KOH solutions as well as high durability. Moreover, Fe<sub>SA</sub>Cu<sub>SA</sub>/NC-based H<sub>2</sub>/O<sub>2</sub> fuel cell and zinc-air battery present superior performance with high peak power density.</p></div>\",\"PeriodicalId\":244,\"journal\":{\"name\":\"Applied Catalysis B: Environmental\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":20.2000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environmental\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926337323012882\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environmental","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926337323012882","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A robust asymmetric diatomic electrocatalyst for oxygen reduction reaction in both acidic and alkaline media
Herein, an asymmetric diatomic site oxygen reduction reaction (ORR) electrocatalyst with atomically dispersed Fe and Cu species co-anchored on porous nitrogen-doped polyhedra carbon was successfully prepared through a facile cooperation of post-adsorption and two-step pyrolysis method. Density functional theory (DFT) calculations reveal that the asymmetric FeCu dual atomic site experiences a symmetry destruction of electron transfer due to the existing Cu-N4 sites and thus results in the electron redistribution in FeSACuSA/NC, contributing significantly to the optimization of intermediates adsorption and acceleration of kinetics during ORR process. Attributed to the structural advantages of FeSA-N4&CuSA-N4 sites and highly porous carbon matrix, the FeSACuSA/NC catalyst exhibits excellent electrocatalytic ORR performance with half-wave potentials (E1/2) of 0.86 and 0.88 V versus reversible hydrogen electrode in 0.1 M HClO4 and 0.1 M KOH solutions as well as high durability. Moreover, FeSACuSA/NC-based H2/O2 fuel cell and zinc-air battery present superior performance with high peak power density.
期刊介绍:
Applied Catalysis B: Environment and Energy (formerly Applied Catalysis B: Environmental) is a journal that focuses on the transition towards cleaner and more sustainable energy sources. The journal's publications cover a wide range of topics, including:
1.Catalytic elimination of environmental pollutants such as nitrogen oxides, carbon monoxide, sulfur compounds, chlorinated and other organic compounds, and soot emitted from stationary or mobile sources.
2.Basic understanding of catalysts used in environmental pollution abatement, particularly in industrial processes.
3.All aspects of preparation, characterization, activation, deactivation, and regeneration of novel and commercially applicable environmental catalysts.
4.New catalytic routes and processes for the production of clean energy, such as hydrogen generation via catalytic fuel processing, and new catalysts and electrocatalysts for fuel cells.
5.Catalytic reactions that convert wastes into useful products.
6.Clean manufacturing techniques that replace toxic chemicals with environmentally friendly catalysts.
7.Scientific aspects of photocatalytic processes and a basic understanding of photocatalysts as applied to environmental problems.
8.New catalytic combustion technologies and catalysts.
9.New catalytic non-enzymatic transformations of biomass components.
The journal is abstracted and indexed in API Abstracts, Research Alert, Chemical Abstracts, Web of Science, Theoretical Chemical Engineering Abstracts, Engineering, Technology & Applied Sciences, and others.