关于第 II 组的共最大子群图

IF 1.1 4区 数学 Q1 MATHEMATICS
Angsuman Das, Manideepa Saha
{"title":"关于第 II 组的共最大子群图","authors":"Angsuman Das, Manideepa Saha","doi":"10.1007/s11587-023-00836-3","DOIUrl":null,"url":null,"abstract":"<p>In this sequel paper, we continue our study on co-maximal subgroup graph <span>\\(\\Gamma (G)\\)</span> of a group <i>G</i>. We discuss some further results on connectedness and when <span>\\(\\Gamma (G)\\)</span> is edgeless. Moreover, we study the independence number, chromatic number and perfectness of <span>\\(\\Gamma (G)\\)</span>. In the process, we show that if the independence number is suitably small, then the underlying group is solvable. We also classify co-maximal subgroup graphs of certain groups upto isomorphism.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"231 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On co-maximal subgroup graph of a group-II\",\"authors\":\"Angsuman Das, Manideepa Saha\",\"doi\":\"10.1007/s11587-023-00836-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this sequel paper, we continue our study on co-maximal subgroup graph <span>\\\\(\\\\Gamma (G)\\\\)</span> of a group <i>G</i>. We discuss some further results on connectedness and when <span>\\\\(\\\\Gamma (G)\\\\)</span> is edgeless. Moreover, we study the independence number, chromatic number and perfectness of <span>\\\\(\\\\Gamma (G)\\\\)</span>. In the process, we show that if the independence number is suitably small, then the underlying group is solvable. We also classify co-maximal subgroup graphs of certain groups upto isomorphism.</p>\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"231 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00836-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-023-00836-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇续篇论文中,我们将继续研究群 G 的共最大子群图 (\Gamma (G)\) )。我们将进一步讨论一些关于连通性以及当 (\Gamma (G)\) 是无边的结果。此外,我们还研究了 \(\Gamma (G)\) 的独立数、色度数和完备性。在这个过程中,我们证明了如果独立数适当小,那么底层群是可解的。我们还对某些群的同最大子群图进行了分类,直至同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On co-maximal subgroup graph of a group-II

In this sequel paper, we continue our study on co-maximal subgroup graph \(\Gamma (G)\) of a group G. We discuss some further results on connectedness and when \(\Gamma (G)\) is edgeless. Moreover, we study the independence number, chromatic number and perfectness of \(\Gamma (G)\). In the process, we show that if the independence number is suitably small, then the underlying group is solvable. We also classify co-maximal subgroup graphs of certain groups upto isomorphism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信