炮弹菌的机理

IF 2.9 3区 生物学 Q2 MYCOLOGY
Nicholas P. Money , Jessica Stolze , Mark W.F. Fischer
{"title":"炮弹菌的机理","authors":"Nicholas P. Money ,&nbsp;Jessica Stolze ,&nbsp;Mark W.F. Fischer","doi":"10.1016/j.funbio.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><div>Species of artillery fungus, <em>Sphaerobolus</em>, use a unique, snap-through buckling mechanism to discharge their spores over a longer distance than any other known fungi. Here, we provide new information on biomechanics of glebal discharge by capturing the launch using high-speed video, measuring the force generated by the inner cup that expels the gleba, and modeling the relationship between the force and speed of the gleba to its trajectory. Associated calculations reveal that patches of the artillery fungus consume 80 times more energy than an individual gilled mushroom to release the same number of spores. The evolution of this costly mechanism may be counterbalanced by the relatively low wastage of spores carried in its sporangia compared with the greater losses of spores released from conventional mushrooms.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"128 8","pages":"Pages 2334-2340"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanics of the artillery fungus\",\"authors\":\"Nicholas P. Money ,&nbsp;Jessica Stolze ,&nbsp;Mark W.F. Fischer\",\"doi\":\"10.1016/j.funbio.2023.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Species of artillery fungus, <em>Sphaerobolus</em>, use a unique, snap-through buckling mechanism to discharge their spores over a longer distance than any other known fungi. Here, we provide new information on biomechanics of glebal discharge by capturing the launch using high-speed video, measuring the force generated by the inner cup that expels the gleba, and modeling the relationship between the force and speed of the gleba to its trajectory. Associated calculations reveal that patches of the artillery fungus consume 80 times more energy than an individual gilled mushroom to release the same number of spores. The evolution of this costly mechanism may be counterbalanced by the relatively low wastage of spores carried in its sporangia compared with the greater losses of spores released from conventional mushrooms.</div></div>\",\"PeriodicalId\":12683,\"journal\":{\"name\":\"Fungal biology\",\"volume\":\"128 8\",\"pages\":\"Pages 2334-2340\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878614623001332\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878614623001332","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

与其他已知真菌相比,炮弹菌(Sphaerobolus)物种利用一种独特的扣压机制将孢子发射到更远的距离。在这里,我们通过使用高速视频捕捉发射过程、测量排出孢子的内杯产生的力,以及建立孢子排出的力和速度与其轨迹之间关系的模型,提供了有关孢子排出生物力学的新信息。相关计算显示,释放相同数量的孢子时,成片的炮弹菌所消耗的能量是单个带刺蘑菇的80倍。与传统蘑菇释放孢子的巨大损失相比,炮弹菌孢子囊中孢子的损耗相对较低,这可能抵消了这种昂贵机制的演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanics of the artillery fungus
Species of artillery fungus, Sphaerobolus, use a unique, snap-through buckling mechanism to discharge their spores over a longer distance than any other known fungi. Here, we provide new information on biomechanics of glebal discharge by capturing the launch using high-speed video, measuring the force generated by the inner cup that expels the gleba, and modeling the relationship between the force and speed of the gleba to its trajectory. Associated calculations reveal that patches of the artillery fungus consume 80 times more energy than an individual gilled mushroom to release the same number of spores. The evolution of this costly mechanism may be counterbalanced by the relatively low wastage of spores carried in its sporangia compared with the greater losses of spores released from conventional mushrooms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fungal biology
Fungal biology MYCOLOGY-
CiteScore
5.80
自引率
4.00%
发文量
80
审稿时长
49 days
期刊介绍: Fungal Biology publishes original contributions in all fields of basic and applied research involving fungi and fungus-like organisms (including oomycetes and slime moulds). Areas of investigation include biodeterioration, biotechnology, cell and developmental biology, ecology, evolution, genetics, geomycology, medical mycology, mutualistic interactions (including lichens and mycorrhizas), physiology, plant pathology, secondary metabolites, and taxonomy and systematics. Submissions on experimental methods are also welcomed. Priority is given to contributions likely to be of interest to a wide international audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信