Nicholas P. Money , Jessica Stolze , Mark W.F. Fischer
{"title":"炮弹菌的机理","authors":"Nicholas P. Money , Jessica Stolze , Mark W.F. Fischer","doi":"10.1016/j.funbio.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><div>Species of artillery fungus, <em>Sphaerobolus</em>, use a unique, snap-through buckling mechanism to discharge their spores over a longer distance than any other known fungi. Here, we provide new information on biomechanics of glebal discharge by capturing the launch using high-speed video, measuring the force generated by the inner cup that expels the gleba, and modeling the relationship between the force and speed of the gleba to its trajectory. Associated calculations reveal that patches of the artillery fungus consume 80 times more energy than an individual gilled mushroom to release the same number of spores. The evolution of this costly mechanism may be counterbalanced by the relatively low wastage of spores carried in its sporangia compared with the greater losses of spores released from conventional mushrooms.</div></div>","PeriodicalId":12683,"journal":{"name":"Fungal biology","volume":"128 8","pages":"Pages 2334-2340"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanics of the artillery fungus\",\"authors\":\"Nicholas P. Money , Jessica Stolze , Mark W.F. Fischer\",\"doi\":\"10.1016/j.funbio.2023.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Species of artillery fungus, <em>Sphaerobolus</em>, use a unique, snap-through buckling mechanism to discharge their spores over a longer distance than any other known fungi. Here, we provide new information on biomechanics of glebal discharge by capturing the launch using high-speed video, measuring the force generated by the inner cup that expels the gleba, and modeling the relationship between the force and speed of the gleba to its trajectory. Associated calculations reveal that patches of the artillery fungus consume 80 times more energy than an individual gilled mushroom to release the same number of spores. The evolution of this costly mechanism may be counterbalanced by the relatively low wastage of spores carried in its sporangia compared with the greater losses of spores released from conventional mushrooms.</div></div>\",\"PeriodicalId\":12683,\"journal\":{\"name\":\"Fungal biology\",\"volume\":\"128 8\",\"pages\":\"Pages 2334-2340\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fungal biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1878614623001332\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fungal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1878614623001332","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
Species of artillery fungus, Sphaerobolus, use a unique, snap-through buckling mechanism to discharge their spores over a longer distance than any other known fungi. Here, we provide new information on biomechanics of glebal discharge by capturing the launch using high-speed video, measuring the force generated by the inner cup that expels the gleba, and modeling the relationship between the force and speed of the gleba to its trajectory. Associated calculations reveal that patches of the artillery fungus consume 80 times more energy than an individual gilled mushroom to release the same number of spores. The evolution of this costly mechanism may be counterbalanced by the relatively low wastage of spores carried in its sporangia compared with the greater losses of spores released from conventional mushrooms.
期刊介绍:
Fungal Biology publishes original contributions in all fields of basic and applied research involving fungi and fungus-like organisms (including oomycetes and slime moulds). Areas of investigation include biodeterioration, biotechnology, cell and developmental biology, ecology, evolution, genetics, geomycology, medical mycology, mutualistic interactions (including lichens and mycorrhizas), physiology, plant pathology, secondary metabolites, and taxonomy and systematics. Submissions on experimental methods are also welcomed. Priority is given to contributions likely to be of interest to a wide international audience.