在剪切应力驱动的血红蛋白聚集体中观察到非平衡波动

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
A. Kabiraj, G. Mallik, P. P. Dash, P. Kumari, M. Bandyopadhyay, S. Rath
{"title":"在剪切应力驱动的血红蛋白聚集体中观察到非平衡波动","authors":"A. Kabiraj,&nbsp;G. Mallik,&nbsp;P. P. Dash,&nbsp;P. Kumari,&nbsp;M. Bandyopadhyay,&nbsp;S. Rath","doi":"10.1140/epje/s10189-023-00389-1","DOIUrl":null,"url":null,"abstract":"<div><p>Non-equilibrium fluctuations caused by the rearrangement of hemoglobin molecules into an aggregate state under shear stress have been investigated experimentally. The flow response under the shear stress (<i>σ</i>) corroborates the presence of contrasting aggregate and rejuvenation states governed by entropy production and consumption events. From the time-dependent shear rate fluctuation studies of aggregate states, the probability distribution function (PDF) of the rate of work done is observed to be spread from negative to positive values with a net positive mean. The PDFs follow the steady-state fluctuation theorem, even at a smaller timescale than that desired by the theorem. The behavior of the effective temperature (<i>T</i><sub>eff</sub>) that emerges from a non-equilibrium fluctuation and interconnects with the structural restrictions of the aggregate state of our driven system is observed to be within the boundary of the thermodynamic uncertainty. The increase in <i>T</i><sub>eff</sub> with the applied <i>σ</i> illustrates a phenomenal nonlinear power flux-dependent aggregating behavior in a classic bio-molecular-driven system.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"46 12","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation of non-equilibrium fluctuation in the shear-stress-driven hemoglobin aggregates\",\"authors\":\"A. Kabiraj,&nbsp;G. Mallik,&nbsp;P. P. Dash,&nbsp;P. Kumari,&nbsp;M. Bandyopadhyay,&nbsp;S. Rath\",\"doi\":\"10.1140/epje/s10189-023-00389-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Non-equilibrium fluctuations caused by the rearrangement of hemoglobin molecules into an aggregate state under shear stress have been investigated experimentally. The flow response under the shear stress (<i>σ</i>) corroborates the presence of contrasting aggregate and rejuvenation states governed by entropy production and consumption events. From the time-dependent shear rate fluctuation studies of aggregate states, the probability distribution function (PDF) of the rate of work done is observed to be spread from negative to positive values with a net positive mean. The PDFs follow the steady-state fluctuation theorem, even at a smaller timescale than that desired by the theorem. The behavior of the effective temperature (<i>T</i><sub>eff</sub>) that emerges from a non-equilibrium fluctuation and interconnects with the structural restrictions of the aggregate state of our driven system is observed to be within the boundary of the thermodynamic uncertainty. The increase in <i>T</i><sub>eff</sub> with the applied <i>σ</i> illustrates a phenomenal nonlinear power flux-dependent aggregating behavior in a classic bio-molecular-driven system.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"46 12\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-023-00389-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-023-00389-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

实验研究了血红蛋白分子在剪切应力作用下重新排列成聚集状态所引起的非平衡波动。剪切应力(σ)下的流动响应证实了在熵产生和消耗事件的支配下,存在着截然不同的聚集和恢复状态。通过对聚集状态的随时间变化的剪切速率波动研究,可以观察到做功速率的概率分布函数(PDF)从负值到正值分布,平均值为净正值。PDF 遵循稳态波动定理,即使时间尺度小于该定理所期望的时间尺度。从非平衡波动中产生的有效温度(Teff)与我们所驱动的系统总体状态的结构限制相互关联,其行为被观察到在热力学不确定性的边界之内。Teff 随应用 σ 的增加而增加,这说明在一个典型的生物分子驱动系统中,存在着惊人的非线性功率通量聚集行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Observation of non-equilibrium fluctuation in the shear-stress-driven hemoglobin aggregates

Observation of non-equilibrium fluctuation in the shear-stress-driven hemoglobin aggregates

Observation of non-equilibrium fluctuation in the shear-stress-driven hemoglobin aggregates

Non-equilibrium fluctuations caused by the rearrangement of hemoglobin molecules into an aggregate state under shear stress have been investigated experimentally. The flow response under the shear stress (σ) corroborates the presence of contrasting aggregate and rejuvenation states governed by entropy production and consumption events. From the time-dependent shear rate fluctuation studies of aggregate states, the probability distribution function (PDF) of the rate of work done is observed to be spread from negative to positive values with a net positive mean. The PDFs follow the steady-state fluctuation theorem, even at a smaller timescale than that desired by the theorem. The behavior of the effective temperature (Teff) that emerges from a non-equilibrium fluctuation and interconnects with the structural restrictions of the aggregate state of our driven system is observed to be within the boundary of the thermodynamic uncertainty. The increase in Teff with the applied σ illustrates a phenomenal nonlinear power flux-dependent aggregating behavior in a classic bio-molecular-driven system.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信