Rochelle Mey, Joaquín Calatayud, José Casaña, Rodrigo Núñez-Cortés, Luis Suso-Martí, Lars Louis Andersen, José Francisco López-Gil, Rubén López-Bueno
{"title":"手握强度与帕金森病有关吗?对 71 702 名老年人的纵向研究。","authors":"Rochelle Mey, Joaquín Calatayud, José Casaña, Rodrigo Núñez-Cortés, Luis Suso-Martí, Lars Louis Andersen, José Francisco López-Gil, Rubén López-Bueno","doi":"10.1177/15459683231207359","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To date, no study has longitudinally assessed the dose-response association between handgrip strength and incidence of Parkinson's Disease (PD).</p><p><strong>Objectives: </strong>to investigate the longitudinal association between handgrip strength and the development of PD within a representative European population of older adults.</p><p><strong>Methods: </strong>Individuals aged 50 years and older from 27 European countries and Israel participated. We retrieved data from the Survey of Health, Ageing and Retirement in Europe waves 1, 2, 4, 5, 6, 7, and 8. Handgrip strength was measured using a hand dynamometer and participants reported whether they had a medical PD diagnosis. Time-varying exposure and covariates were modeled using both Cox regression and restricted cubic splines.</p><p><strong>Results: </strong>A total of 71 702 participants (mean age 65.2 years) were followed over a median period of 5.0 years. Among them, 314 participants developed PD. In the fully adjusted model, we observed a higher risk (hazard ratio [HR]: 2.50; 95% CI:1.92-3.32) of PD for participants with lower handgrip strength (third 1) and a lower risk of PD for participants in the second third (HR: 1.41; 95% CI: 1.06-1.87). In dose-response analyses, men showed lower risk of PD from 27 kg (HR:0.94; 95% CI: 0.91-0.97) to 59 kg (HR:0.10; 95% CI: 0.04-0.22), whereas women showed significant reductions from 24 kg (HR:0.68; 95% CI: 0.46-0.99) to 38 kg (HR:0.44; 95% CI: 0.22-0.88).</p><p><strong>Conclusions: </strong>Handgrip strength ought to be incorporated as one of the measures in the prognostic toolbox for the screening of older adults who are possibly at risk of developing PD.</p>","PeriodicalId":94158,"journal":{"name":"Neurorehabilitation and neural repair","volume":"37 10","pages":"727-733"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is Handgrip Strength Associated With Parkinson's Disease? Longitudinal Study of 71 702 Older Adults.\",\"authors\":\"Rochelle Mey, Joaquín Calatayud, José Casaña, Rodrigo Núñez-Cortés, Luis Suso-Martí, Lars Louis Andersen, José Francisco López-Gil, Rubén López-Bueno\",\"doi\":\"10.1177/15459683231207359\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To date, no study has longitudinally assessed the dose-response association between handgrip strength and incidence of Parkinson's Disease (PD).</p><p><strong>Objectives: </strong>to investigate the longitudinal association between handgrip strength and the development of PD within a representative European population of older adults.</p><p><strong>Methods: </strong>Individuals aged 50 years and older from 27 European countries and Israel participated. We retrieved data from the Survey of Health, Ageing and Retirement in Europe waves 1, 2, 4, 5, 6, 7, and 8. Handgrip strength was measured using a hand dynamometer and participants reported whether they had a medical PD diagnosis. Time-varying exposure and covariates were modeled using both Cox regression and restricted cubic splines.</p><p><strong>Results: </strong>A total of 71 702 participants (mean age 65.2 years) were followed over a median period of 5.0 years. Among them, 314 participants developed PD. In the fully adjusted model, we observed a higher risk (hazard ratio [HR]: 2.50; 95% CI:1.92-3.32) of PD for participants with lower handgrip strength (third 1) and a lower risk of PD for participants in the second third (HR: 1.41; 95% CI: 1.06-1.87). In dose-response analyses, men showed lower risk of PD from 27 kg (HR:0.94; 95% CI: 0.91-0.97) to 59 kg (HR:0.10; 95% CI: 0.04-0.22), whereas women showed significant reductions from 24 kg (HR:0.68; 95% CI: 0.46-0.99) to 38 kg (HR:0.44; 95% CI: 0.22-0.88).</p><p><strong>Conclusions: </strong>Handgrip strength ought to be incorporated as one of the measures in the prognostic toolbox for the screening of older adults who are possibly at risk of developing PD.</p>\",\"PeriodicalId\":94158,\"journal\":{\"name\":\"Neurorehabilitation and neural repair\",\"volume\":\"37 10\",\"pages\":\"727-733\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurorehabilitation and neural repair\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/15459683231207359\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurorehabilitation and neural repair","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/15459683231207359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Is Handgrip Strength Associated With Parkinson's Disease? Longitudinal Study of 71 702 Older Adults.
Background: To date, no study has longitudinally assessed the dose-response association between handgrip strength and incidence of Parkinson's Disease (PD).
Objectives: to investigate the longitudinal association between handgrip strength and the development of PD within a representative European population of older adults.
Methods: Individuals aged 50 years and older from 27 European countries and Israel participated. We retrieved data from the Survey of Health, Ageing and Retirement in Europe waves 1, 2, 4, 5, 6, 7, and 8. Handgrip strength was measured using a hand dynamometer and participants reported whether they had a medical PD diagnosis. Time-varying exposure and covariates were modeled using both Cox regression and restricted cubic splines.
Results: A total of 71 702 participants (mean age 65.2 years) were followed over a median period of 5.0 years. Among them, 314 participants developed PD. In the fully adjusted model, we observed a higher risk (hazard ratio [HR]: 2.50; 95% CI:1.92-3.32) of PD for participants with lower handgrip strength (third 1) and a lower risk of PD for participants in the second third (HR: 1.41; 95% CI: 1.06-1.87). In dose-response analyses, men showed lower risk of PD from 27 kg (HR:0.94; 95% CI: 0.91-0.97) to 59 kg (HR:0.10; 95% CI: 0.04-0.22), whereas women showed significant reductions from 24 kg (HR:0.68; 95% CI: 0.46-0.99) to 38 kg (HR:0.44; 95% CI: 0.22-0.88).
Conclusions: Handgrip strength ought to be incorporated as one of the measures in the prognostic toolbox for the screening of older adults who are possibly at risk of developing PD.