提高学生在图表阅读、解释、构建和评价方面的能力。

IF 4.6 2区 教育学 Q1 EDUCATION, SCIENTIFIC DISCIPLINES
Stephanie M Gardner, Aakanksha Angra, Joseph A Harsh
{"title":"提高学生在图表阅读、解释、构建和评价方面的能力。","authors":"Stephanie M Gardner, Aakanksha Angra, Joseph A Harsh","doi":"10.1187/cbe.22-10-0207","DOIUrl":null,"url":null,"abstract":"<p><p>Graphs are ubiquitous tools in science that allow one to explore data patterns, design studies, communicate findings, and make claims. This essay is a companion to the online, evidence-based interactive guide intended to help inform instructors' decision-making in how to teach graph reading, interpretation, construction, and evaluation within the discipline of biology. We provide a framework with a focus on six instructional practices that instructors can utilize when designing graphing activities: use data to engage students, teach graphing grounded in the discipline, practice explicit instruction, use real world \"messy\" data, utilize collaborative work, and emphasize reflection. Each component of this guide is supported by summaries of and links to articles that can inform graphing practices. The guide also contains an instructor checklist that summarizes key points with actionable steps that can guide instructors as they work towards refining and incorporating graphing into their classroom practice and emerging questions in which further empirical studies are warranted.</p>","PeriodicalId":56321,"journal":{"name":"Cbe-Life Sciences Education","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956603/pdf/","citationCount":"0","resultStr":"{\"title\":\"Supporting Student Competencies in Graph Reading, Interpretation, Construction, and Evaluation.\",\"authors\":\"Stephanie M Gardner, Aakanksha Angra, Joseph A Harsh\",\"doi\":\"10.1187/cbe.22-10-0207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Graphs are ubiquitous tools in science that allow one to explore data patterns, design studies, communicate findings, and make claims. This essay is a companion to the online, evidence-based interactive guide intended to help inform instructors' decision-making in how to teach graph reading, interpretation, construction, and evaluation within the discipline of biology. We provide a framework with a focus on six instructional practices that instructors can utilize when designing graphing activities: use data to engage students, teach graphing grounded in the discipline, practice explicit instruction, use real world \\\"messy\\\" data, utilize collaborative work, and emphasize reflection. Each component of this guide is supported by summaries of and links to articles that can inform graphing practices. The guide also contains an instructor checklist that summarizes key points with actionable steps that can guide instructors as they work towards refining and incorporating graphing into their classroom practice and emerging questions in which further empirical studies are warranted.</p>\",\"PeriodicalId\":56321,\"journal\":{\"name\":\"Cbe-Life Sciences Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10956603/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cbe-Life Sciences Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1187/cbe.22-10-0207\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cbe-Life Sciences Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1187/cbe.22-10-0207","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0

摘要

图表是科学中无处不在的工具,它可以让人们探索数据模式、设计研究、交流发现和提出主张。这篇文章是在线循证互动指南的配套文章,旨在帮助教师在生物学科中如何教授图表阅读、解释、构建和评价方面做出决策。我们提供了一个框架,重点是指导教师在设计图表活动时可以利用的六种教学实践:利用数据吸引学生、在学科基础上教授图表、实践明确的教学、使用真实世界的 "混乱 "数据、利用协作工作以及强调反思。本指南的每个部分都有文章摘要和链接,可为图表教学实践提供参考。本指南还包含一份指导教师清单,其中总结了一些关键要点和可操作的步骤,这些要点和步骤可以指导指导教师努力完善图表教学,并将其纳入课堂实践和需要进一步实证研究的新问题中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Supporting Student Competencies in Graph Reading, Interpretation, Construction, and Evaluation.

Graphs are ubiquitous tools in science that allow one to explore data patterns, design studies, communicate findings, and make claims. This essay is a companion to the online, evidence-based interactive guide intended to help inform instructors' decision-making in how to teach graph reading, interpretation, construction, and evaluation within the discipline of biology. We provide a framework with a focus on six instructional practices that instructors can utilize when designing graphing activities: use data to engage students, teach graphing grounded in the discipline, practice explicit instruction, use real world "messy" data, utilize collaborative work, and emphasize reflection. Each component of this guide is supported by summaries of and links to articles that can inform graphing practices. The guide also contains an instructor checklist that summarizes key points with actionable steps that can guide instructors as they work towards refining and incorporating graphing into their classroom practice and emerging questions in which further empirical studies are warranted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cbe-Life Sciences Education
Cbe-Life Sciences Education EDUCATION, SCIENTIFIC DISCIPLINES-
CiteScore
6.50
自引率
13.50%
发文量
100
审稿时长
>12 weeks
期刊介绍: CBE—Life Sciences Education (LSE), a free, online quarterly journal, is published by the American Society for Cell Biology (ASCB). The journal was launched in spring 2002 as Cell Biology Education—A Journal of Life Science Education. The ASCB changed the name of the journal in spring 2006 to better reflect the breadth of its readership and the scope of its submissions. LSE publishes peer-reviewed articles on life science education at the K–12, undergraduate, and graduate levels. The ASCB believes that learning in biology encompasses diverse fields, including math, chemistry, physics, engineering, computer science, and the interdisciplinary intersections of biology with these fields. Within biology, LSE focuses on how students are introduced to the study of life sciences, as well as approaches in cell biology, developmental biology, neuroscience, biochemistry, molecular biology, genetics, genomics, bioinformatics, and proteomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信