{"title":"利用 VAE-WGAN-GP 模型缓解水质评估中的样本不平衡问题。","authors":"Jingbin Xu, Degang Xu, Kun Wan, Ying Zhang","doi":"10.2166/wst.2023.373","DOIUrl":null,"url":null,"abstract":"<p><p>Water resources are essential for sustaining human life and promoting sustainable development. However, rapid urbanization and industrialization have resulted in a decline in freshwater availability. Effective prevention and control of water pollution are essential for ecological balance and human well-being. Water quality assessment is crucial for monitoring and managing water resources. Existing machine learning-based assessment methods tend to classify the results into the majority class, leading to inaccuracies in the outcomes due to the prevalent issue of imbalanced class sample distribution in practical scenarios. To tackle the issue, we propose a novel approach that utilizes the VAE-WGAN-GP model. The VAE-WGAN-GP model combines the encoding and decoding mechanisms of VAE with the adversarial learning of GAN. It generates synthetic samples that closely resemble real samples, effectively compensating data of the scarcity category in water quality evaluation. Our contributions include (1) introducing a deep generative model to alleviate the issue of imbalanced category samples in water quality assessment, (2) demonstrating the faster convergence speed and improved potential distribution learning ability of the proposed VAE-WGAN-GP model, (3) introducing the compensation degree concept and conducting comprehensive compensation experiments, resulting in a 9.7% increase in the accuracy of water quality assessment for multi-classification imbalance samples.</p>","PeriodicalId":23653,"journal":{"name":"Water Science and Technology","volume":"88 11","pages":"2762-2778"},"PeriodicalIF":2.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2023_373/pdf/","citationCount":"0","resultStr":"{\"title\":\"Alleviating sample imbalance in water quality assessment using the VAE-WGAN-GP model.\",\"authors\":\"Jingbin Xu, Degang Xu, Kun Wan, Ying Zhang\",\"doi\":\"10.2166/wst.2023.373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Water resources are essential for sustaining human life and promoting sustainable development. However, rapid urbanization and industrialization have resulted in a decline in freshwater availability. Effective prevention and control of water pollution are essential for ecological balance and human well-being. Water quality assessment is crucial for monitoring and managing water resources. Existing machine learning-based assessment methods tend to classify the results into the majority class, leading to inaccuracies in the outcomes due to the prevalent issue of imbalanced class sample distribution in practical scenarios. To tackle the issue, we propose a novel approach that utilizes the VAE-WGAN-GP model. The VAE-WGAN-GP model combines the encoding and decoding mechanisms of VAE with the adversarial learning of GAN. It generates synthetic samples that closely resemble real samples, effectively compensating data of the scarcity category in water quality evaluation. Our contributions include (1) introducing a deep generative model to alleviate the issue of imbalanced category samples in water quality assessment, (2) demonstrating the faster convergence speed and improved potential distribution learning ability of the proposed VAE-WGAN-GP model, (3) introducing the compensation degree concept and conducting comprehensive compensation experiments, resulting in a 9.7% increase in the accuracy of water quality assessment for multi-classification imbalance samples.</p>\",\"PeriodicalId\":23653,\"journal\":{\"name\":\"Water Science and Technology\",\"volume\":\"88 11\",\"pages\":\"2762-2778\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/wst_2023_373/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wst.2023.373\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wst.2023.373","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Alleviating sample imbalance in water quality assessment using the VAE-WGAN-GP model.
Water resources are essential for sustaining human life and promoting sustainable development. However, rapid urbanization and industrialization have resulted in a decline in freshwater availability. Effective prevention and control of water pollution are essential for ecological balance and human well-being. Water quality assessment is crucial for monitoring and managing water resources. Existing machine learning-based assessment methods tend to classify the results into the majority class, leading to inaccuracies in the outcomes due to the prevalent issue of imbalanced class sample distribution in practical scenarios. To tackle the issue, we propose a novel approach that utilizes the VAE-WGAN-GP model. The VAE-WGAN-GP model combines the encoding and decoding mechanisms of VAE with the adversarial learning of GAN. It generates synthetic samples that closely resemble real samples, effectively compensating data of the scarcity category in water quality evaluation. Our contributions include (1) introducing a deep generative model to alleviate the issue of imbalanced category samples in water quality assessment, (2) demonstrating the faster convergence speed and improved potential distribution learning ability of the proposed VAE-WGAN-GP model, (3) introducing the compensation degree concept and conducting comprehensive compensation experiments, resulting in a 9.7% increase in the accuracy of water quality assessment for multi-classification imbalance samples.
期刊介绍:
Water Science and Technology publishes peer-reviewed papers on all aspects of the science and technology of water and wastewater. Papers are selected by a rigorous peer review procedure with the aim of rapid and wide dissemination of research results, development and application of new techniques, and related managerial and policy issues. Scientists, engineers, consultants, managers and policy-makers will find this journal essential as a permanent record of progress of research activities and their practical applications.