Tachocline的动力学。

IF 9.1 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Space Science Reviews Pub Date : 2023-01-01 Epub Date: 2023-12-14 DOI:10.1007/s11214-023-01027-0
Antoine Strugarek, Bernadett Belucz, Allan Sacha Brun, Mausumi Dikpati, Gustavo Guerrero
{"title":"Tachocline的动力学。","authors":"Antoine Strugarek, Bernadett Belucz, Allan Sacha Brun, Mausumi Dikpati, Gustavo Guerrero","doi":"10.1007/s11214-023-01027-0","DOIUrl":null,"url":null,"abstract":"<p><p>The solar tachocline is an internal region of the Sun possessing strong radial and latitudinal shears straddling the base of the convective envelope. Based on helioseismic inversions, the tachocline is known to be thin (less than 5% of the solar radius). Since the first theory of the solar tachocline in 1992, this thinness has not ceased to puzzle solar physicists. In this review, we lay out the grounds of our understanding of this fascinating region of the solar interior. We detail the various physical mechanisms at stake in the solar tachocline, and put a particular focus on the mechanisms that have been proposed to explain its thinness. We also examine the full range of MHD processes including waves and instabilities that are likely to occur in the tachocline, as well as their possible connection with active region patterns observed at the surface. We reflect on the most recent findings for each of them, and highlight the physical understanding that is still missing and that would allow the research community to understand, in a generic sense, how the solar tachocline and stellar tachocline are formed, are sustained, and evolve on secular timescales.</p>","PeriodicalId":21902,"journal":{"name":"Space Science Reviews","volume":"219 8","pages":"87"},"PeriodicalIF":9.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721702/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dynamics of the Tachocline.\",\"authors\":\"Antoine Strugarek, Bernadett Belucz, Allan Sacha Brun, Mausumi Dikpati, Gustavo Guerrero\",\"doi\":\"10.1007/s11214-023-01027-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The solar tachocline is an internal region of the Sun possessing strong radial and latitudinal shears straddling the base of the convective envelope. Based on helioseismic inversions, the tachocline is known to be thin (less than 5% of the solar radius). Since the first theory of the solar tachocline in 1992, this thinness has not ceased to puzzle solar physicists. In this review, we lay out the grounds of our understanding of this fascinating region of the solar interior. We detail the various physical mechanisms at stake in the solar tachocline, and put a particular focus on the mechanisms that have been proposed to explain its thinness. We also examine the full range of MHD processes including waves and instabilities that are likely to occur in the tachocline, as well as their possible connection with active region patterns observed at the surface. We reflect on the most recent findings for each of them, and highlight the physical understanding that is still missing and that would allow the research community to understand, in a generic sense, how the solar tachocline and stellar tachocline are formed, are sustained, and evolve on secular timescales.</p>\",\"PeriodicalId\":21902,\"journal\":{\"name\":\"Space Science Reviews\",\"volume\":\"219 8\",\"pages\":\"87\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10721702/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Science Reviews\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11214-023-01027-0\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Science Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11214-023-01027-0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

太阳拉锯线是太阳的一个内部区域,横跨对流包层的底部,具有强烈的径向和纬向切变。根据日震反演,我们知道日冕层很薄(小于太阳半径的 5%)。自 1992 年首次提出太阳拉锯线理论以来,太阳物理学家一直对这一厚度感到困惑。在这篇综述中,我们将阐述我们对太阳内部这一迷人区域的理解基础。我们详细介绍了太阳落差跃层的各种物理机制,并特别强调了为解释太阳落差跃层的薄度而提出的各种机制。我们还研究了可能发生在塔克线的各种 MHD 过程(包括波和不稳定性),以及它们与地表观测到的活动区模式之间可能存在的联系。我们对每个过程的最新发现进行了反思,并强调了仍然缺乏的物理认识,这些认识将使研究界能够从一般意义上理解太阳拉锯线和恒星拉锯线是如何形成、维持和在世俗时间尺度上演化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of the Tachocline.

The solar tachocline is an internal region of the Sun possessing strong radial and latitudinal shears straddling the base of the convective envelope. Based on helioseismic inversions, the tachocline is known to be thin (less than 5% of the solar radius). Since the first theory of the solar tachocline in 1992, this thinness has not ceased to puzzle solar physicists. In this review, we lay out the grounds of our understanding of this fascinating region of the solar interior. We detail the various physical mechanisms at stake in the solar tachocline, and put a particular focus on the mechanisms that have been proposed to explain its thinness. We also examine the full range of MHD processes including waves and instabilities that are likely to occur in the tachocline, as well as their possible connection with active region patterns observed at the surface. We reflect on the most recent findings for each of them, and highlight the physical understanding that is still missing and that would allow the research community to understand, in a generic sense, how the solar tachocline and stellar tachocline are formed, are sustained, and evolve on secular timescales.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Space Science Reviews
Space Science Reviews 地学天文-天文与天体物理
CiteScore
19.70
自引率
3.90%
发文量
60
审稿时长
4-8 weeks
期刊介绍: Space Science Reviews (SSRv) stands as an international journal dedicated to scientific space research, offering a contemporary synthesis across various branches of space exploration. Emphasizing scientific outcomes and instruments, SSRv spans astrophysics, physics of planetary systems, solar physics, and the physics of magnetospheres & interplanetary matter. Beyond Topical Collections and invited Review Articles, Space Science Reviews welcomes unsolicited Review Articles and Special Communications. The latter encompass papers related to a prior topical volume/collection, report-type papers, or timely contributions addressing a robust combination of space science and technology. These papers succinctly summarize both the science and technology aspects of instruments or missions in a single publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信