{"title":"表色素对 RT-PCR 和限制酶活性的抑制作用及其机制","authors":"Hiroshi Sawada, Keisuke Mase, Rimi Koyama, Atsushi Suenaga","doi":"10.2108/zs230068","DOIUrl":null,"url":null,"abstract":"<p><p>To explore the physiological role and/or pharmacological effects of ommochrome, which is a natural organic pigment widely distributed in Protostomia, we attempted to investigate the influence of ommochrome on RT-PCR and activities of restriction enzymes. It was found that ommin, an ommochrome purified from the diapause eggs of <i>Bombyx mori</i>, inhibited the RT-PCR and restriction enzyme activities. The mechanism of these inhibitory reactions is assumed to be the direct binding of ommochrome to DNA rather than acting against the enzymes because, similarly to actinomycin D, there is a phenoxazine ring in the structure of ommin that is known to be intercalated to DNA. To reveal the ommin/DNA interaction, it was investigated by computational approaches such as molecular docking, molecular dynamics simulation, and free energy calculation. From the computational analyses, it was expected that ommin would bind to DNA with almost the same strength as actinomycin D and intercalate into DNA. This is the first report on the pharmacological effect of ommochrome and its inhibitory mechanism obtained from biochemical and computational analyses.</p>","PeriodicalId":24040,"journal":{"name":"Zoological Science","volume":"40 6","pages":"431-436"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibitory Effect on RT-PCR and Restriction Enzyme Activity by Ommochrome and Its Mechanism.\",\"authors\":\"Hiroshi Sawada, Keisuke Mase, Rimi Koyama, Atsushi Suenaga\",\"doi\":\"10.2108/zs230068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To explore the physiological role and/or pharmacological effects of ommochrome, which is a natural organic pigment widely distributed in Protostomia, we attempted to investigate the influence of ommochrome on RT-PCR and activities of restriction enzymes. It was found that ommin, an ommochrome purified from the diapause eggs of <i>Bombyx mori</i>, inhibited the RT-PCR and restriction enzyme activities. The mechanism of these inhibitory reactions is assumed to be the direct binding of ommochrome to DNA rather than acting against the enzymes because, similarly to actinomycin D, there is a phenoxazine ring in the structure of ommin that is known to be intercalated to DNA. To reveal the ommin/DNA interaction, it was investigated by computational approaches such as molecular docking, molecular dynamics simulation, and free energy calculation. From the computational analyses, it was expected that ommin would bind to DNA with almost the same strength as actinomycin D and intercalate into DNA. This is the first report on the pharmacological effect of ommochrome and its inhibitory mechanism obtained from biochemical and computational analyses.</p>\",\"PeriodicalId\":24040,\"journal\":{\"name\":\"Zoological Science\",\"volume\":\"40 6\",\"pages\":\"431-436\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoological Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2108/zs230068\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2108/zs230068","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
为了探索广泛分布于原丝藻类中的天然有机色素--omochrome的生理作用和/或药理作用,我们尝试研究了omochrome对RT-PCR和限制酶活性的影响。结果发现,从减数分裂的森雌蚕卵中纯化出的一种omochrome--ommin抑制了RT-PCR和限制酶的活性。这些抑制反应的机理被认为是奥姆敏与 DNA 直接结合,而不是对酶起作用,因为与放线菌素 D 相似,奥姆敏的结构中也有一个吩嗪环,已知它能插入 DNA。为了揭示ommin/DNA之间的相互作用,我们采用了分子对接、分子动力学模拟和自由能计算等计算方法对其进行了研究。计算分析结果表明,ommin 与 DNA 的结合强度几乎与放线菌素 D 相同,并能插入 DNA。这是首次报道通过生化和计算分析获得的奥美拉唑的药理作用及其抑制机制。
Inhibitory Effect on RT-PCR and Restriction Enzyme Activity by Ommochrome and Its Mechanism.
To explore the physiological role and/or pharmacological effects of ommochrome, which is a natural organic pigment widely distributed in Protostomia, we attempted to investigate the influence of ommochrome on RT-PCR and activities of restriction enzymes. It was found that ommin, an ommochrome purified from the diapause eggs of Bombyx mori, inhibited the RT-PCR and restriction enzyme activities. The mechanism of these inhibitory reactions is assumed to be the direct binding of ommochrome to DNA rather than acting against the enzymes because, similarly to actinomycin D, there is a phenoxazine ring in the structure of ommin that is known to be intercalated to DNA. To reveal the ommin/DNA interaction, it was investigated by computational approaches such as molecular docking, molecular dynamics simulation, and free energy calculation. From the computational analyses, it was expected that ommin would bind to DNA with almost the same strength as actinomycin D and intercalate into DNA. This is the first report on the pharmacological effect of ommochrome and its inhibitory mechanism obtained from biochemical and computational analyses.
期刊介绍:
Zoological Science is published by the Zoological Society of Japan and devoted to publication of original articles, reviews and editorials that cover the broad field of zoology. The journal was founded in 1984 as a result of the consolidation of Zoological Magazine (1888–1983) and Annotationes Zoologicae Japonenses (1897–1983), the former official journals of the Zoological Society of Japan. Each annual volume consists of six regular issues, one every two months.