Harald Lund, Matthew A Hunt, Zerina Kurtović, Katalin Sandor, Paul B Kägy, Noah Fereydouni, Anais Julien, Christian Göritz, Elisa Vazquez-Liebanas, Maarja Andaloussi Mäe, Alexandra Jurczak, Jinming Han, Keying Zhu, Robert A Harris, Jon Lampa, Jonas Heilskov Graversen, Anders Etzerodt, Lisbet Haglund, Tony L Yaksh, Camilla I Svensson
{"title":"CD163+ 巨噬细胞可监测血液-背根神经节屏障通透性的增强。","authors":"Harald Lund, Matthew A Hunt, Zerina Kurtović, Katalin Sandor, Paul B Kägy, Noah Fereydouni, Anais Julien, Christian Göritz, Elisa Vazquez-Liebanas, Maarja Andaloussi Mäe, Alexandra Jurczak, Jinming Han, Keying Zhu, Robert A Harris, Jon Lampa, Jonas Heilskov Graversen, Anders Etzerodt, Lisbet Haglund, Tony L Yaksh, Camilla I Svensson","doi":"10.1084/jem.20230675","DOIUrl":null,"url":null,"abstract":"<p><p>In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163+ macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"221 2","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733632/pdf/","citationCount":"0","resultStr":"{\"title\":\"CD163+ macrophages monitor enhanced permeability at the blood-dorsal root ganglion barrier.\",\"authors\":\"Harald Lund, Matthew A Hunt, Zerina Kurtović, Katalin Sandor, Paul B Kägy, Noah Fereydouni, Anais Julien, Christian Göritz, Elisa Vazquez-Liebanas, Maarja Andaloussi Mäe, Alexandra Jurczak, Jinming Han, Keying Zhu, Robert A Harris, Jon Lampa, Jonas Heilskov Graversen, Anders Etzerodt, Lisbet Haglund, Tony L Yaksh, Camilla I Svensson\",\"doi\":\"10.1084/jem.20230675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163+ macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.</p>\",\"PeriodicalId\":15760,\"journal\":{\"name\":\"Journal of Experimental Medicine\",\"volume\":\"221 2\",\"pages\":\"\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10733632/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20230675\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20230675","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
CD163+ macrophages monitor enhanced permeability at the blood-dorsal root ganglion barrier.
In dorsal root ganglia (DRG), macrophages reside close to sensory neurons and have largely been explored in the context of pain, nerve injury, and repair. However, we discovered that most DRG macrophages interact with and monitor the vasculature by sampling macromolecules from the blood. Characterization of the DRG vasculature revealed a specialized endothelial bed that transformed in molecular, structural, and permeability properties along the arteriovenous axis and was covered by macrophage-interacting pericytes and fibroblasts. Macrophage phagocytosis spatially aligned with peak endothelial permeability, a process regulated by enhanced caveolar transcytosis in endothelial cells. Profiling the DRG immune landscape revealed two subsets of perivascular macrophages with distinct transcriptome, turnover, and function. CD163+ macrophages self-maintained locally, specifically participated in vasculature monitoring, displayed distinct responses during peripheral inflammation, and were conserved in mouse and man. Our work provides a molecular explanation for the permeability of the blood-DRG barrier and identifies an unappreciated role of macrophages as integral components of the DRG-neurovascular unit.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.