Sarah Moore, Jean McGowan-Jordan, Adam C Smith, Katrina Rack, Udo Koehler, Marian Stevens-Kroef, Hayk Barseghyan, Rashmi Kanagal-Shamanna, Ros Hastings
{"title":"基因组测绘命名法。","authors":"Sarah Moore, Jean McGowan-Jordan, Adam C Smith, Katrina Rack, Udo Koehler, Marian Stevens-Kroef, Hayk Barseghyan, Rashmi Kanagal-Shamanna, Ros Hastings","doi":"10.1159/000535684","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Genome Mapping Technologies (optical and electronic) use ultra-high molecular weight DNA to detect structural variation and have application in constitutional genetic disorders, hematological neoplasms, and solid tumors. Genome mapping can detect balanced and unbalanced structural variation, copy number changes, and haplotypes. The technique is analogous to chromosomal microarray analysis, although genome mapping has the added benefit of being able to detect and ascertain the nature of more abnormalities in a single assay than array, karyotyping, or FISH alone.</p><p><strong>Key messages: </strong>This paper describes a specific nomenclature for genome mapping that can be used by diagnostic and research centers to report their findings accurately. An international nomenclature is essential for patient results to be understood by different healthcare providers as well as for clear communication in publications and consistency in databases.</p><p><strong>Summary: </strong>Genome mapping can detect aneuploidy, balanced and unbalanced structural variation, as well as copy number changes. The Standing Committee for the International System for Human Cytogenomic Nomenclature (ISCN) recognised there was a need for a specific nomenclature for genome mapping that encompasses the range of abnormalities detected by this technique. This paper explains the general principles of the nomenclature as well as giving specific ISCN examples for the different types of numerical and structural rearrangements.</p>","PeriodicalId":11206,"journal":{"name":"Cytogenetic and Genome Research","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome Mapping Nomenclature.\",\"authors\":\"Sarah Moore, Jean McGowan-Jordan, Adam C Smith, Katrina Rack, Udo Koehler, Marian Stevens-Kroef, Hayk Barseghyan, Rashmi Kanagal-Shamanna, Ros Hastings\",\"doi\":\"10.1159/000535684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Genome Mapping Technologies (optical and electronic) use ultra-high molecular weight DNA to detect structural variation and have application in constitutional genetic disorders, hematological neoplasms, and solid tumors. Genome mapping can detect balanced and unbalanced structural variation, copy number changes, and haplotypes. The technique is analogous to chromosomal microarray analysis, although genome mapping has the added benefit of being able to detect and ascertain the nature of more abnormalities in a single assay than array, karyotyping, or FISH alone.</p><p><strong>Key messages: </strong>This paper describes a specific nomenclature for genome mapping that can be used by diagnostic and research centers to report their findings accurately. An international nomenclature is essential for patient results to be understood by different healthcare providers as well as for clear communication in publications and consistency in databases.</p><p><strong>Summary: </strong>Genome mapping can detect aneuploidy, balanced and unbalanced structural variation, as well as copy number changes. The Standing Committee for the International System for Human Cytogenomic Nomenclature (ISCN) recognised there was a need for a specific nomenclature for genome mapping that encompasses the range of abnormalities detected by this technique. This paper explains the general principles of the nomenclature as well as giving specific ISCN examples for the different types of numerical and structural rearrangements.</p>\",\"PeriodicalId\":11206,\"journal\":{\"name\":\"Cytogenetic and Genome Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytogenetic and Genome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1159/000535684\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetic and Genome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000535684","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/11 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景 基因组测绘技术(光学和电子)使用超高分子量 DNA 来检测结构变异,适用于体质遗传疾病、血液肿瘤和实体瘤。基因组图谱可检测平衡和不平衡结构变异、拷贝数变化和单倍型。该技术类似于染色体微阵列分析,但与阵列、核型或 FISH 相比,基因组图谱的另一个优势是能够检测和确定更多异常的性质。关键信息 本文介绍了基因组图谱的专用术语,诊断和研究中心可使用该术语准确报告其研究结果。国际术语对于不同的医疗服务提供者理解患者的检查结果、在出版物中清晰交流以及在数据库中保持一致至关重要。摘要 基因组图谱可检测非整倍体、平衡和不平衡结构变异以及拷贝数变化。国际人类细胞基因组命名系统(ISCN)常设委员会认为有必要为基因组测绘制定一个特定的命名,以涵盖该技术所检测到的各种异常。本文解释了命名法的一般原则,并针对不同类型的数字和结构重排给出了具体的 ISCN 示例。
Background: Genome Mapping Technologies (optical and electronic) use ultra-high molecular weight DNA to detect structural variation and have application in constitutional genetic disorders, hematological neoplasms, and solid tumors. Genome mapping can detect balanced and unbalanced structural variation, copy number changes, and haplotypes. The technique is analogous to chromosomal microarray analysis, although genome mapping has the added benefit of being able to detect and ascertain the nature of more abnormalities in a single assay than array, karyotyping, or FISH alone.
Key messages: This paper describes a specific nomenclature for genome mapping that can be used by diagnostic and research centers to report their findings accurately. An international nomenclature is essential for patient results to be understood by different healthcare providers as well as for clear communication in publications and consistency in databases.
Summary: Genome mapping can detect aneuploidy, balanced and unbalanced structural variation, as well as copy number changes. The Standing Committee for the International System for Human Cytogenomic Nomenclature (ISCN) recognised there was a need for a specific nomenclature for genome mapping that encompasses the range of abnormalities detected by this technique. This paper explains the general principles of the nomenclature as well as giving specific ISCN examples for the different types of numerical and structural rearrangements.
期刊介绍:
During the last decades, ''Cytogenetic and Genome Research'' has been the leading forum for original reports and reviews in human and animal cytogenetics, including molecular, clinical and comparative cytogenetics. In recent years, most of its papers have centered on genome research, including gene cloning and sequencing, gene mapping, gene regulation and expression, cancer genetics, comparative genetics, gene linkage and related areas. The journal also publishes key papers on chromosome aberrations in somatic, meiotic and malignant cells. Its scope has expanded to include studies on invertebrate and plant cytogenetics and genomics. Also featured are the vast majority of the reports of the International Workshops on Human Chromosome Mapping, the reports of international human and animal chromosome nomenclature committees, and proceedings of the American and European cytogenetic conferences and other events. In addition to regular issues, the journal has been publishing since 2002 a series of topical issues on a broad variety of themes from cytogenetic and genome research.