难以捉摸的蟒蛇心脏肥大。

IF 5.3 2区 医学 Q1 PHYSIOLOGY
Physiology Pub Date : 2024-03-01 Epub Date: 2023-12-12 DOI:10.1152/physiol.00025.2023
Bjarke Jensen, Tobias Wang
{"title":"难以捉摸的蟒蛇心脏肥大。","authors":"Bjarke Jensen, Tobias Wang","doi":"10.1152/physiol.00025.2023","DOIUrl":null,"url":null,"abstract":"<p><p>The Burmese python, one of the world's largest snakes, has reached celebrity status for its dramatic physiological responses associated with digestion of enormous meals. The meals elicit a rapid gain of mass and function of most visceral organs, particularly the small intestine. There is also a manyfold elevation of oxygen consumption that demands the heart to deliver more oxygen. It therefore made intuitive sense when it was reported that the postprandial response entailed a 40% growth of heart mass that could accommodate a rise in stroke volume. Many studies, however, have not been able to reproduce the 40% growth of the heart. We collated published values on postprandial heart mass in pythons, which include several instances of no change in heart mass. On average, the heart mass is only 15% greater. The changes in heart mass did not correlate to the mass gain of the small intestine or peak oxygen consumption. Hemodynamic studies show that the rise in cardiac output does not require increased heart mass but can be fully explained by augmented cardiac filling and postprandial tachycardia. Under the assumption that hypertrophy is a contingent phenomenon, more recent experiments have employed two interventions such as feeding with a concomitant reduction in hematocrit. The results suggest that the postprandial response of the heart can be enhanced, but the 40% hypertrophy of the python heart remains elusive.</p>","PeriodicalId":49694,"journal":{"name":"Physiology","volume":" ","pages":"0"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Elusive Hypertrophy of the Python Heart.\",\"authors\":\"Bjarke Jensen, Tobias Wang\",\"doi\":\"10.1152/physiol.00025.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Burmese python, one of the world's largest snakes, has reached celebrity status for its dramatic physiological responses associated with digestion of enormous meals. The meals elicit a rapid gain of mass and function of most visceral organs, particularly the small intestine. There is also a manyfold elevation of oxygen consumption that demands the heart to deliver more oxygen. It therefore made intuitive sense when it was reported that the postprandial response entailed a 40% growth of heart mass that could accommodate a rise in stroke volume. Many studies, however, have not been able to reproduce the 40% growth of the heart. We collated published values on postprandial heart mass in pythons, which include several instances of no change in heart mass. On average, the heart mass is only 15% greater. The changes in heart mass did not correlate to the mass gain of the small intestine or peak oxygen consumption. Hemodynamic studies show that the rise in cardiac output does not require increased heart mass but can be fully explained by augmented cardiac filling and postprandial tachycardia. Under the assumption that hypertrophy is a contingent phenomenon, more recent experiments have employed two interventions such as feeding with a concomitant reduction in hematocrit. The results suggest that the postprandial response of the heart can be enhanced, but the 40% hypertrophy of the python heart remains elusive.</p>\",\"PeriodicalId\":49694,\"journal\":{\"name\":\"Physiology\",\"volume\":\" \",\"pages\":\"0\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/physiol.00025.2023\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physiol.00025.2023","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

缅甸蟒蛇是世界上最大的蛇类之一,因其在消化巨大食物时产生的剧烈生理反应而享有盛名。进食后,大多数内脏器官(尤其是小肠)的质量和功能都会迅速增加。同时,耗氧量也会成倍增加,这就要求心脏提供更多的氧气。因此,当有报道称餐后反应会导致心脏质量增长 40%,以适应中风量的增加时,这是很直观的。然而,许多研究都无法再现心脏增长 40% 的现象。我们整理了已发表的蟒蛇餐后心脏质量值,其中有几例心脏质量没有变化。平均而言,心脏质量只增加了 15%。心脏质量的变化与小肠质量的增加或峰值耗氧量无关。血液动力学研究表明,心输出量的增加并不需要心脏质量的增加,心脏充盈增加和餐后心动过速完全可以解释这一点。在肥大是一种偶然现象的假设下,最近的实验采用了两种干预措施,如喂食的同时降低血细胞比容。结果表明,心脏的餐后反应可以增强,但蟒蛇心脏 40% 的肥大仍然难以捉摸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Elusive Hypertrophy of the Python Heart.

The Burmese python, one of the world's largest snakes, has reached celebrity status for its dramatic physiological responses associated with digestion of enormous meals. The meals elicit a rapid gain of mass and function of most visceral organs, particularly the small intestine. There is also a manyfold elevation of oxygen consumption that demands the heart to deliver more oxygen. It therefore made intuitive sense when it was reported that the postprandial response entailed a 40% growth of heart mass that could accommodate a rise in stroke volume. Many studies, however, have not been able to reproduce the 40% growth of the heart. We collated published values on postprandial heart mass in pythons, which include several instances of no change in heart mass. On average, the heart mass is only 15% greater. The changes in heart mass did not correlate to the mass gain of the small intestine or peak oxygen consumption. Hemodynamic studies show that the rise in cardiac output does not require increased heart mass but can be fully explained by augmented cardiac filling and postprandial tachycardia. Under the assumption that hypertrophy is a contingent phenomenon, more recent experiments have employed two interventions such as feeding with a concomitant reduction in hematocrit. The results suggest that the postprandial response of the heart can be enhanced, but the 40% hypertrophy of the python heart remains elusive.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiology
Physiology 医学-生理学
CiteScore
14.50
自引率
0.00%
发文量
37
期刊介绍: Physiology journal features meticulously crafted review articles penned by esteemed leaders in their respective fields. These articles undergo rigorous peer review and showcase the forefront of cutting-edge advances across various domains of physiology. Our Editorial Board, comprised of distinguished leaders in the broad spectrum of physiology, convenes annually to deliberate and recommend pioneering topics for review articles, as well as select the most suitable scientists to author these articles. Join us in exploring the forefront of physiological research and innovation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信