癌症中的 Ten-Eleven-Translocation 基因

Q2 Medicine
Yadong Wang, Xujun Wang, Jun Lu
{"title":"癌症中的 Ten-Eleven-Translocation 基因","authors":"Yadong Wang, Xujun Wang, Jun Lu","doi":"10.1007/978-3-031-45654-1_11","DOIUrl":null,"url":null,"abstract":"<p><p>The Ten-Eleven-Translocation (TET) family of genes, including TET1, TET2, and TET3, play critical roles in the oxidation of 5-methylcytosine marks in both DNA and RNA, thereby regulating the epigenome and epitranscriptome in cells. These genes are frequently mutated in both hematopoietic malignancies and in solid cancers. TET2, in particular, is one of the most frequently mutated genes in clonal hematopoiesis in the general population, which impacts both the transformation of hematopoietic malignancies and the immune responses in solid tumors. While much has been learned in the 14 years since the discovery of TETs' biochemical function and mutations, many important questions remain. This review covers several aspects of TET-related biology to discuss key yet unanswered questions. What are the functions of different forms of TET mutations found in human cancers? How does TET2 mutation enable pre-malignant hematopoietic expansion? How does TET2 mutation cooperate with partner lesions to cause transformation? And how do TET mutations affect immune responses in solid cancers.</p>","PeriodicalId":9486,"journal":{"name":"Cancer treatment and research","volume":"190 ","pages":"363-373"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ten-Eleven-Translocation Genes in Cancer.\",\"authors\":\"Yadong Wang, Xujun Wang, Jun Lu\",\"doi\":\"10.1007/978-3-031-45654-1_11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Ten-Eleven-Translocation (TET) family of genes, including TET1, TET2, and TET3, play critical roles in the oxidation of 5-methylcytosine marks in both DNA and RNA, thereby regulating the epigenome and epitranscriptome in cells. These genes are frequently mutated in both hematopoietic malignancies and in solid cancers. TET2, in particular, is one of the most frequently mutated genes in clonal hematopoiesis in the general population, which impacts both the transformation of hematopoietic malignancies and the immune responses in solid tumors. While much has been learned in the 14 years since the discovery of TETs' biochemical function and mutations, many important questions remain. This review covers several aspects of TET-related biology to discuss key yet unanswered questions. What are the functions of different forms of TET mutations found in human cancers? How does TET2 mutation enable pre-malignant hematopoietic expansion? How does TET2 mutation cooperate with partner lesions to cause transformation? And how do TET mutations affect immune responses in solid cancers.</p>\",\"PeriodicalId\":9486,\"journal\":{\"name\":\"Cancer treatment and research\",\"volume\":\"190 \",\"pages\":\"363-373\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer treatment and research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-45654-1_11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer treatment and research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-45654-1_11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

摘要

包括 TET1、TET2 和 TET3 在内的 Ten-Eleven-Translocation (TET)家族基因在 DNA 和 RNA 中 5-甲基胞嘧啶标记的氧化过程中发挥着关键作用,从而调节细胞中的表观遗传组和表转录组。在造血恶性肿瘤和实体瘤中,这些基因经常发生突变。特别是 TET2,它是普通人群克隆性造血中最常发生突变的基因之一,对造血恶性肿瘤的转化和实体瘤的免疫反应都有影响。自发现 TETs 的生化功能和突变以来的 14 年中,人们已经了解了很多,但仍有许多重要问题。这篇综述涵盖了 TET 相关生物学的几个方面,讨论了尚未解答的关键问题。在人类癌症中发现的不同形式的 TET 突变有哪些功能?TET2突变如何使恶性前造血扩张?TET2突变如何与伙伴病变合作导致转化?TET突变如何影响实体瘤的免疫反应?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ten-Eleven-Translocation Genes in Cancer.

The Ten-Eleven-Translocation (TET) family of genes, including TET1, TET2, and TET3, play critical roles in the oxidation of 5-methylcytosine marks in both DNA and RNA, thereby regulating the epigenome and epitranscriptome in cells. These genes are frequently mutated in both hematopoietic malignancies and in solid cancers. TET2, in particular, is one of the most frequently mutated genes in clonal hematopoiesis in the general population, which impacts both the transformation of hematopoietic malignancies and the immune responses in solid tumors. While much has been learned in the 14 years since the discovery of TETs' biochemical function and mutations, many important questions remain. This review covers several aspects of TET-related biology to discuss key yet unanswered questions. What are the functions of different forms of TET mutations found in human cancers? How does TET2 mutation enable pre-malignant hematopoietic expansion? How does TET2 mutation cooperate with partner lesions to cause transformation? And how do TET mutations affect immune responses in solid cancers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cancer treatment and research
Cancer treatment and research Medicine-Oncology
CiteScore
1.00
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信