Sophie Emberley-Korkmaz, Krittika Mittal, Na'im Temlock, Jessica Head, Niladri Basu
{"title":"19 种杀虫剂在虹鳟鱼鳃、肝和肠细胞系中的细胞毒性。","authors":"Sophie Emberley-Korkmaz, Krittika Mittal, Na'im Temlock, Jessica Head, Niladri Basu","doi":"10.1002/etc.5808","DOIUrl":null,"url":null,"abstract":"<p><p>The rainbow trout gill cell line (RTgill-W1), via test guideline 249 of the Organisation for Economic Co-operation and Development, has been established as a promising New Approach Methodology, although to advance confidence in the method more case studies are needed that: 1) expand our understanding of applicability domains (chemicals with diverse properties); 2) increase methodological throughput (96-well format); and 3) demonstrate biological relevance (in vitro to in vivo comparisons; gill vs. other cells). Accordingly, the objective of our study was to characterize the cytotoxicity of 19 pesticides against RTgill-W1 cells, and also liver (RTL-W1) and gut epithelial (RTgutGC) cell lines, and then to compare the in vitro and in vivo data. Of the 19 pesticides tested, 11, 9, and 8 were cytotoxic to the RTgill-W1, RTL-W1, and RTgutGC cells, respectively. Six pesticides (carbaryl, chlorothalonil, chlorpyrifos, dimethenamid-P, metolachlor, and S-metolachlor) were cytotoxic to all three cell lines. Aminomethylphosphonic acid, chlorantraniliprole, dicamba, diquat, imazethapyr, and permethrin exhibited cell-line-specific toxicity. No cytotoxic responses were observed for three herbicides (atrazine, glyphosate, and metribuzin) and four insecticides (clothianidin, diazinon, imidacloprid, and thiamethoxam). When cytotoxicity was measured, there was a strong correlation (rs = 0.9, p < 0.0001) between in vitro median effect concentration (EC50) values (based on predicted concentrations using the In Vitro Mass Balance Model Equilibrium Partitioning (IV-MBM EQP) Ver. 2.1) derived from RTgill-W1 and RTL-W1 cells with in vivo median lethal concentration (LC50) values from 96-h acute toxicity studies with trout. In all 28 cases, the in vitro EC50 was within 18-fold of the in vivo LC50. These data help increase our understanding of the ecotoxicological domains of applicability for in vitro studies using cultured rainbow trout cells, while also demonstrating that these assays performed well in a 96-well format and have promise to yield data of biological relevance.</p>","PeriodicalId":11793,"journal":{"name":"Environmental Toxicology and Chemistry","volume":" ","pages":"2443-2454"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytotoxicity of 19 pesticides in rainbow trout gill, liver, and intestinal cell lines.\",\"authors\":\"Sophie Emberley-Korkmaz, Krittika Mittal, Na'im Temlock, Jessica Head, Niladri Basu\",\"doi\":\"10.1002/etc.5808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rainbow trout gill cell line (RTgill-W1), via test guideline 249 of the Organisation for Economic Co-operation and Development, has been established as a promising New Approach Methodology, although to advance confidence in the method more case studies are needed that: 1) expand our understanding of applicability domains (chemicals with diverse properties); 2) increase methodological throughput (96-well format); and 3) demonstrate biological relevance (in vitro to in vivo comparisons; gill vs. other cells). Accordingly, the objective of our study was to characterize the cytotoxicity of 19 pesticides against RTgill-W1 cells, and also liver (RTL-W1) and gut epithelial (RTgutGC) cell lines, and then to compare the in vitro and in vivo data. Of the 19 pesticides tested, 11, 9, and 8 were cytotoxic to the RTgill-W1, RTL-W1, and RTgutGC cells, respectively. Six pesticides (carbaryl, chlorothalonil, chlorpyrifos, dimethenamid-P, metolachlor, and S-metolachlor) were cytotoxic to all three cell lines. Aminomethylphosphonic acid, chlorantraniliprole, dicamba, diquat, imazethapyr, and permethrin exhibited cell-line-specific toxicity. No cytotoxic responses were observed for three herbicides (atrazine, glyphosate, and metribuzin) and four insecticides (clothianidin, diazinon, imidacloprid, and thiamethoxam). When cytotoxicity was measured, there was a strong correlation (rs = 0.9, p < 0.0001) between in vitro median effect concentration (EC50) values (based on predicted concentrations using the In Vitro Mass Balance Model Equilibrium Partitioning (IV-MBM EQP) Ver. 2.1) derived from RTgill-W1 and RTL-W1 cells with in vivo median lethal concentration (LC50) values from 96-h acute toxicity studies with trout. In all 28 cases, the in vitro EC50 was within 18-fold of the in vivo LC50. These data help increase our understanding of the ecotoxicological domains of applicability for in vitro studies using cultured rainbow trout cells, while also demonstrating that these assays performed well in a 96-well format and have promise to yield data of biological relevance.</p>\",\"PeriodicalId\":11793,\"journal\":{\"name\":\"Environmental Toxicology and Chemistry\",\"volume\":\" \",\"pages\":\"2443-2454\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Toxicology and Chemistry\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/etc.5808\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology and Chemistry","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/etc.5808","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Cytotoxicity of 19 pesticides in rainbow trout gill, liver, and intestinal cell lines.
The rainbow trout gill cell line (RTgill-W1), via test guideline 249 of the Organisation for Economic Co-operation and Development, has been established as a promising New Approach Methodology, although to advance confidence in the method more case studies are needed that: 1) expand our understanding of applicability domains (chemicals with diverse properties); 2) increase methodological throughput (96-well format); and 3) demonstrate biological relevance (in vitro to in vivo comparisons; gill vs. other cells). Accordingly, the objective of our study was to characterize the cytotoxicity of 19 pesticides against RTgill-W1 cells, and also liver (RTL-W1) and gut epithelial (RTgutGC) cell lines, and then to compare the in vitro and in vivo data. Of the 19 pesticides tested, 11, 9, and 8 were cytotoxic to the RTgill-W1, RTL-W1, and RTgutGC cells, respectively. Six pesticides (carbaryl, chlorothalonil, chlorpyrifos, dimethenamid-P, metolachlor, and S-metolachlor) were cytotoxic to all three cell lines. Aminomethylphosphonic acid, chlorantraniliprole, dicamba, diquat, imazethapyr, and permethrin exhibited cell-line-specific toxicity. No cytotoxic responses were observed for three herbicides (atrazine, glyphosate, and metribuzin) and four insecticides (clothianidin, diazinon, imidacloprid, and thiamethoxam). When cytotoxicity was measured, there was a strong correlation (rs = 0.9, p < 0.0001) between in vitro median effect concentration (EC50) values (based on predicted concentrations using the In Vitro Mass Balance Model Equilibrium Partitioning (IV-MBM EQP) Ver. 2.1) derived from RTgill-W1 and RTL-W1 cells with in vivo median lethal concentration (LC50) values from 96-h acute toxicity studies with trout. In all 28 cases, the in vitro EC50 was within 18-fold of the in vivo LC50. These data help increase our understanding of the ecotoxicological domains of applicability for in vitro studies using cultured rainbow trout cells, while also demonstrating that these assays performed well in a 96-well format and have promise to yield data of biological relevance.
期刊介绍:
The Society of Environmental Toxicology and Chemistry (SETAC) publishes two journals: Environmental Toxicology and Chemistry (ET&C) and Integrated Environmental Assessment and Management (IEAM). Environmental Toxicology and Chemistry is dedicated to furthering scientific knowledge and disseminating information on environmental toxicology and chemistry, including the application of these sciences to risk assessment.[...]
Environmental Toxicology and Chemistry is interdisciplinary in scope and integrates the fields of environmental toxicology; environmental, analytical, and molecular chemistry; ecology; physiology; biochemistry; microbiology; genetics; genomics; environmental engineering; chemical, environmental, and biological modeling; epidemiology; and earth sciences. ET&C seeks to publish papers describing original experimental or theoretical work that significantly advances understanding in the area of environmental toxicology, environmental chemistry and hazard/risk assessment. Emphasis is given to papers that enhance capabilities for the prediction, measurement, and assessment of the fate and effects of chemicals in the environment, rather than simply providing additional data. The scientific impact of papers is judged in terms of the breadth and depth of the findings and the expected influence on existing or future scientific practice. Methodological papers must make clear not only how the work differs from existing practice, but the significance of these differences to the field. Site-based research or monitoring must have regional or global implications beyond the particular site, such as evaluating processes, mechanisms, or theory under a natural environmental setting.