{"title":"Nrf2提高了脂肪来源干细胞在大鼠神经源性勃起功能障碍模型中的治疗效率。","authors":"Shangbin Yang, Wancheng Shi, Qianhui Liu, Yingqiu Song, Jiafeng Fang","doi":"10.1186/s12610-023-00214-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Erectile dysfunction (ED) caused by intraoperative nerve injury is a major complication of pelvic surgery. Adipose-derived stem cells (ADSCs) have presented therapeutic potential in a rat model of bilateral cavernous nerve injury (BCNI), while inadequate in vivo viability has largely limited their application. Nuclear factor-E2-related Factor (Nrf2) is a key transcription factor that regulates cellular anti-oxidative stress. In this work, we investigated the effect of Nrf2 expression regulation on the viability of ADSCs, and explore its repair potential in a BCNI rat model.</p><p><strong>Results: </strong>The survival time of tert-Butylhydroquinone (tBHQ)-ADSCs in BCNI model increased obviously. In addition, the tBHQ-ADSCs group presented better restoration of major pelvic ganglion (MPG) nerve contents and fibers, better improvement of erectile function, and less penile fibrosis than the other groups. Moreover, the expression of Nrf2 and superoxide dismutase 1 (SOD1) were higher than those of other groups.</p><p><strong>Conclusion: </strong>Nrf2 could enhance the anti-oxidative stress ability of ADSCs, so as to improve the therapeutic effect of ADSCs on BCNI rat model.</p>","PeriodicalId":8730,"journal":{"name":"Basic and Clinical Andrology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10731878/pdf/","citationCount":"0","resultStr":"{\"title\":\"Nrf2 enhances the therapeutic efficiency of adipose-derived stem cells in the treatment of neurogenic erectile dysfunction in a rat model.\",\"authors\":\"Shangbin Yang, Wancheng Shi, Qianhui Liu, Yingqiu Song, Jiafeng Fang\",\"doi\":\"10.1186/s12610-023-00214-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Erectile dysfunction (ED) caused by intraoperative nerve injury is a major complication of pelvic surgery. Adipose-derived stem cells (ADSCs) have presented therapeutic potential in a rat model of bilateral cavernous nerve injury (BCNI), while inadequate in vivo viability has largely limited their application. Nuclear factor-E2-related Factor (Nrf2) is a key transcription factor that regulates cellular anti-oxidative stress. In this work, we investigated the effect of Nrf2 expression regulation on the viability of ADSCs, and explore its repair potential in a BCNI rat model.</p><p><strong>Results: </strong>The survival time of tert-Butylhydroquinone (tBHQ)-ADSCs in BCNI model increased obviously. In addition, the tBHQ-ADSCs group presented better restoration of major pelvic ganglion (MPG) nerve contents and fibers, better improvement of erectile function, and less penile fibrosis than the other groups. Moreover, the expression of Nrf2 and superoxide dismutase 1 (SOD1) were higher than those of other groups.</p><p><strong>Conclusion: </strong>Nrf2 could enhance the anti-oxidative stress ability of ADSCs, so as to improve the therapeutic effect of ADSCs on BCNI rat model.</p>\",\"PeriodicalId\":8730,\"journal\":{\"name\":\"Basic and Clinical Andrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10731878/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic and Clinical Andrology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12610-023-00214-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANDROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and Clinical Andrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12610-023-00214-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANDROLOGY","Score":null,"Total":0}
Nrf2 enhances the therapeutic efficiency of adipose-derived stem cells in the treatment of neurogenic erectile dysfunction in a rat model.
Background: Erectile dysfunction (ED) caused by intraoperative nerve injury is a major complication of pelvic surgery. Adipose-derived stem cells (ADSCs) have presented therapeutic potential in a rat model of bilateral cavernous nerve injury (BCNI), while inadequate in vivo viability has largely limited their application. Nuclear factor-E2-related Factor (Nrf2) is a key transcription factor that regulates cellular anti-oxidative stress. In this work, we investigated the effect of Nrf2 expression regulation on the viability of ADSCs, and explore its repair potential in a BCNI rat model.
Results: The survival time of tert-Butylhydroquinone (tBHQ)-ADSCs in BCNI model increased obviously. In addition, the tBHQ-ADSCs group presented better restoration of major pelvic ganglion (MPG) nerve contents and fibers, better improvement of erectile function, and less penile fibrosis than the other groups. Moreover, the expression of Nrf2 and superoxide dismutase 1 (SOD1) were higher than those of other groups.
Conclusion: Nrf2 could enhance the anti-oxidative stress ability of ADSCs, so as to improve the therapeutic effect of ADSCs on BCNI rat model.
期刊介绍:
Basic and Clinical Andrology is an open access journal in the domain of andrology covering all aspects of male reproductive and sexual health in both human and animal models. The journal aims to bring to light the various clinical advancements and research developments in andrology from the international community.