Hao Lan, Jiawei Wang, Liwei Cheng, Dandan Yu, Hua Wang and Lin Guo
{"title":"晶体-非晶态杂化材料的合成与应用","authors":"Hao Lan, Jiawei Wang, Liwei Cheng, Dandan Yu, Hua Wang and Lin Guo","doi":"10.1039/D3CS00860F","DOIUrl":null,"url":null,"abstract":"<p >Crystalline–amorphous hybrid materials (CA-HMs) possess the merits of both pure crystalline and amorphous phases. Abundant dangling bonds, unsaturated coordination atoms, and isotropic structural features in the amorphous phase, as well as relatively high electronic conductivity and thermodynamic structural stability of the crystalline phase simultaneously take effect in CA-HMs. Furthermore, the atomic and bandgap mismatch at the CA-HM interface can introduce more defects as extra active sites, reservoirs for promoted catalytic and electrochemical performance, and induce built-in electric field for facile charge carrier transport. Motivated by these intriguing features, herein, we provide a comprehensive overview of CA-HMs on various aspects—from synthetic methods to multiple applications. Typical characteristics of CA-HMs are discussed at the beginning, followed by representative synthetic strategies of CA-HMs, including hydrothermal/solvothermal methods, deposition techniques, thermal adjustment, and templating methods. Diverse applications of CA-HMs, such as electrocatalysis, batteries, supercapacitors, mechanics, optoelectronics, and thermoelectrics along with underlying structure–property mechanisms are carefully elucidated. Finally, challenges and perspectives of CA-HMs are proposed with an aim to provide insights into the future development of CA-HMs.</p>","PeriodicalId":68,"journal":{"name":"Chemical Society Reviews","volume":" 2","pages":" 684-713"},"PeriodicalIF":39.0000,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The synthesis and application of crystalline–amorphous hybrid materials\",\"authors\":\"Hao Lan, Jiawei Wang, Liwei Cheng, Dandan Yu, Hua Wang and Lin Guo\",\"doi\":\"10.1039/D3CS00860F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Crystalline–amorphous hybrid materials (CA-HMs) possess the merits of both pure crystalline and amorphous phases. Abundant dangling bonds, unsaturated coordination atoms, and isotropic structural features in the amorphous phase, as well as relatively high electronic conductivity and thermodynamic structural stability of the crystalline phase simultaneously take effect in CA-HMs. Furthermore, the atomic and bandgap mismatch at the CA-HM interface can introduce more defects as extra active sites, reservoirs for promoted catalytic and electrochemical performance, and induce built-in electric field for facile charge carrier transport. Motivated by these intriguing features, herein, we provide a comprehensive overview of CA-HMs on various aspects—from synthetic methods to multiple applications. Typical characteristics of CA-HMs are discussed at the beginning, followed by representative synthetic strategies of CA-HMs, including hydrothermal/solvothermal methods, deposition techniques, thermal adjustment, and templating methods. Diverse applications of CA-HMs, such as electrocatalysis, batteries, supercapacitors, mechanics, optoelectronics, and thermoelectrics along with underlying structure–property mechanisms are carefully elucidated. Finally, challenges and perspectives of CA-HMs are proposed with an aim to provide insights into the future development of CA-HMs.</p>\",\"PeriodicalId\":68,\"journal\":{\"name\":\"Chemical Society Reviews\",\"volume\":\" 2\",\"pages\":\" 684-713\"},\"PeriodicalIF\":39.0000,\"publicationDate\":\"2023-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Society Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/cs/d3cs00860f\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Society Reviews","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/cs/d3cs00860f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The synthesis and application of crystalline–amorphous hybrid materials
Crystalline–amorphous hybrid materials (CA-HMs) possess the merits of both pure crystalline and amorphous phases. Abundant dangling bonds, unsaturated coordination atoms, and isotropic structural features in the amorphous phase, as well as relatively high electronic conductivity and thermodynamic structural stability of the crystalline phase simultaneously take effect in CA-HMs. Furthermore, the atomic and bandgap mismatch at the CA-HM interface can introduce more defects as extra active sites, reservoirs for promoted catalytic and electrochemical performance, and induce built-in electric field for facile charge carrier transport. Motivated by these intriguing features, herein, we provide a comprehensive overview of CA-HMs on various aspects—from synthetic methods to multiple applications. Typical characteristics of CA-HMs are discussed at the beginning, followed by representative synthetic strategies of CA-HMs, including hydrothermal/solvothermal methods, deposition techniques, thermal adjustment, and templating methods. Diverse applications of CA-HMs, such as electrocatalysis, batteries, supercapacitors, mechanics, optoelectronics, and thermoelectrics along with underlying structure–property mechanisms are carefully elucidated. Finally, challenges and perspectives of CA-HMs are proposed with an aim to provide insights into the future development of CA-HMs.
期刊介绍:
Chemical Society Reviews is published by: Royal Society of Chemistry.
Focus: Review articles on topics of current interest in chemistry;
Predecessors: Quarterly Reviews, Chemical Society (1947–1971);
Current title: Since 1971;
Impact factor: 60.615 (2021);
Themed issues: Occasional themed issues on new and emerging areas of research in the chemical sciences