John Wang , Zhi Kacie Pei , Yawei Wang , Zhaoqiong Qin
{"title":"通过自回归综合移动平均数和回归分析调查收入不平等问题","authors":"John Wang , Zhi Kacie Pei , Yawei Wang , Zhaoqiong Qin","doi":"10.1016/j.health.2023.100287","DOIUrl":null,"url":null,"abstract":"<div><p>Income inequality is a prominent contributor to health disparities in the U.S. As a leading capitalist nation, the U.S. registers the highest healthcare expenditure among developed countries yet grapples with widening income disparities. The chasm between the rich and the underprivileged has expanded significantly in recent decades, profoundly impacting American society. This study explores the nuances of income inequality, its ramifications, and potential remedies, analyzed through the Gini Coefficient. Advanced forecasting models, including AutoRegressive Integrated Moving Average and Regression Analysis, are employed to anticipate future patterns. The research highlights the value of healthcare analytics in understanding the complexities of income inequality. The findings underscore the pressing need for effective policies to address this mounting challenge.</p></div>","PeriodicalId":73222,"journal":{"name":"Healthcare analytics (New York, N.Y.)","volume":"5 ","pages":"Article 100287"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772442523001545/pdfft?md5=88d6a94bda88aeef7545aec8e67d8667&pid=1-s2.0-S2772442523001545-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An investigation of income inequality through autoregressive integrated moving average and regression analysis\",\"authors\":\"John Wang , Zhi Kacie Pei , Yawei Wang , Zhaoqiong Qin\",\"doi\":\"10.1016/j.health.2023.100287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Income inequality is a prominent contributor to health disparities in the U.S. As a leading capitalist nation, the U.S. registers the highest healthcare expenditure among developed countries yet grapples with widening income disparities. The chasm between the rich and the underprivileged has expanded significantly in recent decades, profoundly impacting American society. This study explores the nuances of income inequality, its ramifications, and potential remedies, analyzed through the Gini Coefficient. Advanced forecasting models, including AutoRegressive Integrated Moving Average and Regression Analysis, are employed to anticipate future patterns. The research highlights the value of healthcare analytics in understanding the complexities of income inequality. The findings underscore the pressing need for effective policies to address this mounting challenge.</p></div>\",\"PeriodicalId\":73222,\"journal\":{\"name\":\"Healthcare analytics (New York, N.Y.)\",\"volume\":\"5 \",\"pages\":\"Article 100287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772442523001545/pdfft?md5=88d6a94bda88aeef7545aec8e67d8667&pid=1-s2.0-S2772442523001545-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Healthcare analytics (New York, N.Y.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772442523001545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare analytics (New York, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772442523001545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An investigation of income inequality through autoregressive integrated moving average and regression analysis
Income inequality is a prominent contributor to health disparities in the U.S. As a leading capitalist nation, the U.S. registers the highest healthcare expenditure among developed countries yet grapples with widening income disparities. The chasm between the rich and the underprivileged has expanded significantly in recent decades, profoundly impacting American society. This study explores the nuances of income inequality, its ramifications, and potential remedies, analyzed through the Gini Coefficient. Advanced forecasting models, including AutoRegressive Integrated Moving Average and Regression Analysis, are employed to anticipate future patterns. The research highlights the value of healthcare analytics in understanding the complexities of income inequality. The findings underscore the pressing need for effective policies to address this mounting challenge.