Matteo Cagnoni, Pietro Testa, Jorge S. Dolado, Federica Cappelluti
{"title":"利用水泥基辐射冷却器扩展太阳能电池的详细平衡建模","authors":"Matteo Cagnoni, Pietro Testa, Jorge S. Dolado, Federica Cappelluti","doi":"10.1002/pip.3758","DOIUrl":null,"url":null,"abstract":"<p>Reducing the temperature of a solar cell increases its efficiency and lifetime. This can be achieved by radiative cooling, a passive and simple method relying on materials that dump heat into outer space by thermal emission within the atmosphere transparency window between 8 and \n<span></span><math>\n <mn>13</mn>\n <mspace></mspace>\n <mi>μ</mi>\n <mi>m</mi></math>. As most radiative coolers are expensive or possibly UV unstable, we have recently proposed cement-based solutions as a robust and cost-effective alternative. However, the assessment model used describes the cell in the radiative limit and with perfect thermal coupling to the cooler, in line with the literature. In this work, we lift these two approximations, by incorporating Auger and Shockley–Read–Hall nonradiative recombination and a finite heat transfer coefficient at the cell/cooler interface, to obtain a thermal description of the cell/cooler stack closer to reality, while preserving the universality and transparency of the detailed-balance approach. We use this model to demonstrate that the cell performance gains provided by a radiative cooler are underestimated in the radiative limit and are hence more prominent in devices with stronger nonradiative recombination. Furthermore, we quantify the relation between cell temperature and heat transfer coefficient at the cell/cooler interface and show how this can be used to define design requirements. The extended model developed, and the resulting observations provide important guidelines toward the practical realization of novel radiative coolers for solar cells, including cement-based ones.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 1","pages":"54-63"},"PeriodicalIF":8.0000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3758","citationCount":"0","resultStr":"{\"title\":\"Extended detailed balance modeling toward solar cells with cement-based radiative coolers\",\"authors\":\"Matteo Cagnoni, Pietro Testa, Jorge S. Dolado, Federica Cappelluti\",\"doi\":\"10.1002/pip.3758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reducing the temperature of a solar cell increases its efficiency and lifetime. This can be achieved by radiative cooling, a passive and simple method relying on materials that dump heat into outer space by thermal emission within the atmosphere transparency window between 8 and \\n<span></span><math>\\n <mn>13</mn>\\n <mspace></mspace>\\n <mi>μ</mi>\\n <mi>m</mi></math>. As most radiative coolers are expensive or possibly UV unstable, we have recently proposed cement-based solutions as a robust and cost-effective alternative. However, the assessment model used describes the cell in the radiative limit and with perfect thermal coupling to the cooler, in line with the literature. In this work, we lift these two approximations, by incorporating Auger and Shockley–Read–Hall nonradiative recombination and a finite heat transfer coefficient at the cell/cooler interface, to obtain a thermal description of the cell/cooler stack closer to reality, while preserving the universality and transparency of the detailed-balance approach. We use this model to demonstrate that the cell performance gains provided by a radiative cooler are underestimated in the radiative limit and are hence more prominent in devices with stronger nonradiative recombination. Furthermore, we quantify the relation between cell temperature and heat transfer coefficient at the cell/cooler interface and show how this can be used to define design requirements. The extended model developed, and the resulting observations provide important guidelines toward the practical realization of novel radiative coolers for solar cells, including cement-based ones.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"33 1\",\"pages\":\"54-63\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3758\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3758\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3758","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Extended detailed balance modeling toward solar cells with cement-based radiative coolers
Reducing the temperature of a solar cell increases its efficiency and lifetime. This can be achieved by radiative cooling, a passive and simple method relying on materials that dump heat into outer space by thermal emission within the atmosphere transparency window between 8 and
. As most radiative coolers are expensive or possibly UV unstable, we have recently proposed cement-based solutions as a robust and cost-effective alternative. However, the assessment model used describes the cell in the radiative limit and with perfect thermal coupling to the cooler, in line with the literature. In this work, we lift these two approximations, by incorporating Auger and Shockley–Read–Hall nonradiative recombination and a finite heat transfer coefficient at the cell/cooler interface, to obtain a thermal description of the cell/cooler stack closer to reality, while preserving the universality and transparency of the detailed-balance approach. We use this model to demonstrate that the cell performance gains provided by a radiative cooler are underestimated in the radiative limit and are hence more prominent in devices with stronger nonradiative recombination. Furthermore, we quantify the relation between cell temperature and heat transfer coefficient at the cell/cooler interface and show how this can be used to define design requirements. The extended model developed, and the resulting observations provide important guidelines toward the practical realization of novel radiative coolers for solar cells, including cement-based ones.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.