$$cal{Y}$ -Tuning:通过标签表示学习对大规模预训练模型进行高效调整的范例

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yitao Liu, Chenxin An, Xipeng Qiu
{"title":"$$cal{Y}$ -Tuning:通过标签表示学习对大规模预训练模型进行高效调整的范例","authors":"Yitao Liu, Chenxin An, Xipeng Qiu","doi":"10.1007/s11704-023-3131-8","DOIUrl":null,"url":null,"abstract":"<p>With current success of large-scale pre-trained models (PTMs), how efficiently adapting PTMs to downstream tasks has attracted tremendous attention, especially for PTMs with billions of parameters. Previous work focuses on designing parameter-efficient tuning paradigms but needs to save and compute the gradient of the whole computational graph. In this paper, we propose <span>\\(\\cal{Y}\\)</span>-Tuning, an efficient yet effective paradigm to adapt frozen large-scale PTMs to specific downstream tasks. <span>\\(\\cal{Y}\\)</span>-Tuning learns dense representations for labels <span>\\(\\cal{Y}\\)</span> defined in a given task and aligns them to fixed feature representation. Without computing the gradients of text encoder at training phrase, <span>\\(\\cal{Y}\\)</span>-Tuning is not only parameter-efficient but also training-efficient. Experimental results show that for DeBERTa<sub>XXL</sub> with 1.6 billion parameters, <span>\\(\\cal{Y}\\)</span>-Tuning achieves performance more than 96% of full fine-tuning on GLUE Benchmark with only 2% tunable parameters and much fewer training costs.</p>","PeriodicalId":12640,"journal":{"name":"Frontiers of Computer Science","volume":"38 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$$\\\\cal{Y}$$ -Tuning: an efficient tuning paradigm for large-scale pre-trained models via label representation learning\",\"authors\":\"Yitao Liu, Chenxin An, Xipeng Qiu\",\"doi\":\"10.1007/s11704-023-3131-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With current success of large-scale pre-trained models (PTMs), how efficiently adapting PTMs to downstream tasks has attracted tremendous attention, especially for PTMs with billions of parameters. Previous work focuses on designing parameter-efficient tuning paradigms but needs to save and compute the gradient of the whole computational graph. In this paper, we propose <span>\\\\(\\\\cal{Y}\\\\)</span>-Tuning, an efficient yet effective paradigm to adapt frozen large-scale PTMs to specific downstream tasks. <span>\\\\(\\\\cal{Y}\\\\)</span>-Tuning learns dense representations for labels <span>\\\\(\\\\cal{Y}\\\\)</span> defined in a given task and aligns them to fixed feature representation. Without computing the gradients of text encoder at training phrase, <span>\\\\(\\\\cal{Y}\\\\)</span>-Tuning is not only parameter-efficient but also training-efficient. Experimental results show that for DeBERTa<sub>XXL</sub> with 1.6 billion parameters, <span>\\\\(\\\\cal{Y}\\\\)</span>-Tuning achieves performance more than 96% of full fine-tuning on GLUE Benchmark with only 2% tunable parameters and much fewer training costs.</p>\",\"PeriodicalId\":12640,\"journal\":{\"name\":\"Frontiers of Computer Science\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11704-023-3131-8\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11704-023-3131-8","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

随着目前大规模预训练模型(PTM)的成功,如何有效地调整 PTM 以适应下游任务引起了极大的关注,尤其是对于拥有数十亿参数的 PTM。以往的工作主要集中在设计参数高效的调整范式,但需要保存和计算整个计算图的梯度。在本文中,我们提出了 \(\cal{Y}\)-Tuning 这一高效而有效的范式,用于使冻结的大规模 PTM 适应特定的下游任务。\(\cal{Y}\)-Tuning学习在给定任务中定义的标签的密集表示,并将它们与固定的特征表示对齐。由于不需要在训练短语中计算文本编码器的梯度,\(\cal{Y}\)-Tuning 不仅参数效率高,而且训练效率也很高。实验结果表明,对于拥有 16 亿个参数的 DeBERTaXXL,\(\cal{Y}\)-Tuning 只需 2% 的可调参数和更少的训练成本,就能在 GLUE Benchmark 上实现超过 96% 的完全微调性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$$\cal{Y}$$ -Tuning: an efficient tuning paradigm for large-scale pre-trained models via label representation learning

With current success of large-scale pre-trained models (PTMs), how efficiently adapting PTMs to downstream tasks has attracted tremendous attention, especially for PTMs with billions of parameters. Previous work focuses on designing parameter-efficient tuning paradigms but needs to save and compute the gradient of the whole computational graph. In this paper, we propose \(\cal{Y}\)-Tuning, an efficient yet effective paradigm to adapt frozen large-scale PTMs to specific downstream tasks. \(\cal{Y}\)-Tuning learns dense representations for labels \(\cal{Y}\) defined in a given task and aligns them to fixed feature representation. Without computing the gradients of text encoder at training phrase, \(\cal{Y}\)-Tuning is not only parameter-efficient but also training-efficient. Experimental results show that for DeBERTaXXL with 1.6 billion parameters, \(\cal{Y}\)-Tuning achieves performance more than 96% of full fine-tuning on GLUE Benchmark with only 2% tunable parameters and much fewer training costs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Computer Science
Frontiers of Computer Science COMPUTER SCIENCE, INFORMATION SYSTEMS-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
8.60
自引率
2.40%
发文量
799
审稿时长
6-12 weeks
期刊介绍: Frontiers of Computer Science aims to provide a forum for the publication of peer-reviewed papers to promote rapid communication and exchange between computer scientists. The journal publishes research papers and review articles in a wide range of topics, including: architecture, software, artificial intelligence, theoretical computer science, networks and communication, information systems, multimedia and graphics, information security, interdisciplinary, etc. The journal especially encourages papers from new emerging and multidisciplinary areas, as well as papers reflecting the international trends of research and development and on special topics reporting progress made by Chinese computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信