属于阿诺索夫环的双曲吸引子

IF 0.8 4区 数学 Q3 MATHEMATICS, APPLIED
Marina K. Barinova, Vyacheslav Z. Grines, Olga V. Pochinka, Evgeny V. Zhuzhoma
{"title":"属于阿诺索夫环的双曲吸引子","authors":"Marina K. Barinova,&nbsp;Vyacheslav Z. Grines,&nbsp;Olga V. Pochinka,&nbsp;Evgeny V. Zhuzhoma","doi":"10.1134/S1560354723540018","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a topologically mixing hyperbolic attractor <span>\\(\\Lambda\\subset M^{n}\\)</span> for a diffeomorphism <span>\\(f:M^{n}\\to M^{n}\\)</span> of a compact orientable <span>\\(n\\)</span>-manifold <span>\\(M^{n}\\)</span>, <span>\\(n&gt;3\\)</span>. Such an attractor <span>\\(\\Lambda\\)</span> is called an Anosov torus provided the restriction <span>\\(f|_{\\Lambda}\\)</span> is conjugate to Anosov algebraic automorphism of <span>\\(k\\)</span>-dimensional torus <span>\\(\\mathbb{T}^{k}\\)</span>.\nWe prove that <span>\\(\\Lambda\\)</span> is an Anosov torus for two cases:\n1) <span>\\(\\dim{\\Lambda}=n-1\\)</span>, <span>\\(\\dim{W^{u}_{x}}=1\\)</span>, <span>\\(x\\in\\Lambda\\)</span>;\n2) <span>\\(\\dim\\Lambda=k,\\dim W^{u}_{x}=k-1,x\\in\\Lambda\\)</span>, and <span>\\(\\Lambda\\)</span> belongs to an <span>\\(f\\)</span>-invariant closed <span>\\(k\\)</span>-manifold, <span>\\(2\\leqslant k\\leqslant n\\)</span>, topologically embedded in <span>\\(M^{n}\\)</span>.</p></div>","PeriodicalId":752,"journal":{"name":"Regular and Chaotic Dynamics","volume":"29 2","pages":"369 - 375"},"PeriodicalIF":0.8000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperbolic Attractors Which are Anosov Tori\",\"authors\":\"Marina K. Barinova,&nbsp;Vyacheslav Z. Grines,&nbsp;Olga V. Pochinka,&nbsp;Evgeny V. Zhuzhoma\",\"doi\":\"10.1134/S1560354723540018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider a topologically mixing hyperbolic attractor <span>\\\\(\\\\Lambda\\\\subset M^{n}\\\\)</span> for a diffeomorphism <span>\\\\(f:M^{n}\\\\to M^{n}\\\\)</span> of a compact orientable <span>\\\\(n\\\\)</span>-manifold <span>\\\\(M^{n}\\\\)</span>, <span>\\\\(n&gt;3\\\\)</span>. Such an attractor <span>\\\\(\\\\Lambda\\\\)</span> is called an Anosov torus provided the restriction <span>\\\\(f|_{\\\\Lambda}\\\\)</span> is conjugate to Anosov algebraic automorphism of <span>\\\\(k\\\\)</span>-dimensional torus <span>\\\\(\\\\mathbb{T}^{k}\\\\)</span>.\\nWe prove that <span>\\\\(\\\\Lambda\\\\)</span> is an Anosov torus for two cases:\\n1) <span>\\\\(\\\\dim{\\\\Lambda}=n-1\\\\)</span>, <span>\\\\(\\\\dim{W^{u}_{x}}=1\\\\)</span>, <span>\\\\(x\\\\in\\\\Lambda\\\\)</span>;\\n2) <span>\\\\(\\\\dim\\\\Lambda=k,\\\\dim W^{u}_{x}=k-1,x\\\\in\\\\Lambda\\\\)</span>, and <span>\\\\(\\\\Lambda\\\\)</span> belongs to an <span>\\\\(f\\\\)</span>-invariant closed <span>\\\\(k\\\\)</span>-manifold, <span>\\\\(2\\\\leqslant k\\\\leqslant n\\\\)</span>, topologically embedded in <span>\\\\(M^{n}\\\\)</span>.</p></div>\",\"PeriodicalId\":752,\"journal\":{\"name\":\"Regular and Chaotic Dynamics\",\"volume\":\"29 2\",\"pages\":\"369 - 375\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regular and Chaotic Dynamics\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1560354723540018\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regular and Chaotic Dynamics","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S1560354723540018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑紧凑可定向曼弗雷德\(M^{n}\)的衍射\(f:M^{n}\to M^{n}\)的拓扑混合双曲吸引子\(\Lambda\子集 M^{n}\),\(n>3\)。如果限制条件 \(f|_{\λλ}\) 与 \(k\)-dimensional torus \(\mathbb{T}^{k}\)的阿诺索夫代数自动形共轭,那么这样的吸引子 \(\λλ\)就叫做阿诺索夫环。我们证明了两种情况下的\(\Lambda\)是阿诺索夫环:1) ((\dim{\Lambda}=n-1\), ((\dim{W^{u}_{x}}=1\), (x\in\Lambda\);2) \(\dim\Lambda=k,\dim W^{u}_{x}=k-1,x\in\Lambda\), and \(\Lambda\) belongs to an \(f\)-invariant closed \(k\)-manifold, \(2\leqslant k\leqslant n\), topologically embedded in \(M^{n}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hyperbolic Attractors Which are Anosov Tori

Hyperbolic Attractors Which are Anosov Tori

We consider a topologically mixing hyperbolic attractor \(\Lambda\subset M^{n}\) for a diffeomorphism \(f:M^{n}\to M^{n}\) of a compact orientable \(n\)-manifold \(M^{n}\), \(n>3\). Such an attractor \(\Lambda\) is called an Anosov torus provided the restriction \(f|_{\Lambda}\) is conjugate to Anosov algebraic automorphism of \(k\)-dimensional torus \(\mathbb{T}^{k}\). We prove that \(\Lambda\) is an Anosov torus for two cases: 1) \(\dim{\Lambda}=n-1\), \(\dim{W^{u}_{x}}=1\), \(x\in\Lambda\); 2) \(\dim\Lambda=k,\dim W^{u}_{x}=k-1,x\in\Lambda\), and \(\Lambda\) belongs to an \(f\)-invariant closed \(k\)-manifold, \(2\leqslant k\leqslant n\), topologically embedded in \(M^{n}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.10%
发文量
35
审稿时长
>12 weeks
期刊介绍: Regular and Chaotic Dynamics (RCD) is an international journal publishing original research papers in dynamical systems theory and its applications. Rooted in the Moscow school of mathematics and mechanics, the journal successfully combines classical problems, modern mathematical techniques and breakthroughs in the field. Regular and Chaotic Dynamics welcomes papers that establish original results, characterized by rigorous mathematical settings and proofs, and that also address practical problems. In addition to research papers, the journal publishes review articles, historical and polemical essays, and translations of works by influential scientists of past centuries, previously unavailable in English. Along with regular issues, RCD also publishes special issues devoted to particular topics and events in the world of dynamical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信