{"title":"第二类萜烯环化酶:结构、机制和工程学","authors":"Xingming Pan , Jeffrey D. Rudolf , Liao-Bin Dong","doi":"10.1039/d3np00033h","DOIUrl":null,"url":null,"abstract":"<div><p>Covering: up to July 2023</p></div><div><p>Terpene cyclases (TCs) catalyze some of the most complicated reactions in nature and are responsible for creating the skeletons of more than 95 000 terpenoid natural products. The canonical TCs are divided into two classes according to their structures, functions, and mechanisms. The class II TCs mediate acid–base-initiated cyclization reactions of isoprenoid diphosphates, terpenes without diphosphates (<em>e.g.</em>, squalene or oxidosqualene), and prenyl moieties on meroterpenes. The past twenty years witnessed the emergence of many class II TCs, their reactions and their roles in biosynthesis. Class II TCs often act as one of the first steps in the biosynthesis of biologically active natural products including the gibberellin family of phytohormones and fungal meroterpenoids. Due to their mechanisms and biocatalytic potential, TCs elicit fervent attention in the biosynthetic and organic communities and provide great enthusiasm for enzyme engineering to construct novel and bioactive molecules. To engineer and expand the structural diversities of terpenoids, it is imperative to fully understand how these enzymes generate, precisely control, and quench the reactive carbocation intermediates. In this review, we summarize class II TCs from nature, including sesquiterpene, diterpene, triterpene, and meroterpenoid cyclases as well as noncanonical class II TCs and inspect their sequences, structures, mechanisms, and structure-guided engineering studies.</p></div>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":null,"pages":null},"PeriodicalIF":12.7000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Class II terpene cyclases: structures, mechanisms, and engineering\",\"authors\":\"Xingming Pan , Jeffrey D. Rudolf , Liao-Bin Dong\",\"doi\":\"10.1039/d3np00033h\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Covering: up to July 2023</p></div><div><p>Terpene cyclases (TCs) catalyze some of the most complicated reactions in nature and are responsible for creating the skeletons of more than 95 000 terpenoid natural products. The canonical TCs are divided into two classes according to their structures, functions, and mechanisms. The class II TCs mediate acid–base-initiated cyclization reactions of isoprenoid diphosphates, terpenes without diphosphates (<em>e.g.</em>, squalene or oxidosqualene), and prenyl moieties on meroterpenes. The past twenty years witnessed the emergence of many class II TCs, their reactions and their roles in biosynthesis. Class II TCs often act as one of the first steps in the biosynthesis of biologically active natural products including the gibberellin family of phytohormones and fungal meroterpenoids. Due to their mechanisms and biocatalytic potential, TCs elicit fervent attention in the biosynthetic and organic communities and provide great enthusiasm for enzyme engineering to construct novel and bioactive molecules. To engineer and expand the structural diversities of terpenoids, it is imperative to fully understand how these enzymes generate, precisely control, and quench the reactive carbocation intermediates. In this review, we summarize class II TCs from nature, including sesquiterpene, diterpene, triterpene, and meroterpenoid cyclases as well as noncanonical class II TCs and inspect their sequences, structures, mechanisms, and structure-guided engineering studies.</p></div>\",\"PeriodicalId\":10,\"journal\":{\"name\":\"ACS Central Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Central Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S0265056824000187\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0265056824000187","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Class II terpene cyclases: structures, mechanisms, and engineering
Covering: up to July 2023
Terpene cyclases (TCs) catalyze some of the most complicated reactions in nature and are responsible for creating the skeletons of more than 95 000 terpenoid natural products. The canonical TCs are divided into two classes according to their structures, functions, and mechanisms. The class II TCs mediate acid–base-initiated cyclization reactions of isoprenoid diphosphates, terpenes without diphosphates (e.g., squalene or oxidosqualene), and prenyl moieties on meroterpenes. The past twenty years witnessed the emergence of many class II TCs, their reactions and their roles in biosynthesis. Class II TCs often act as one of the first steps in the biosynthesis of biologically active natural products including the gibberellin family of phytohormones and fungal meroterpenoids. Due to their mechanisms and biocatalytic potential, TCs elicit fervent attention in the biosynthetic and organic communities and provide great enthusiasm for enzyme engineering to construct novel and bioactive molecules. To engineer and expand the structural diversities of terpenoids, it is imperative to fully understand how these enzymes generate, precisely control, and quench the reactive carbocation intermediates. In this review, we summarize class II TCs from nature, including sesquiterpene, diterpene, triterpene, and meroterpenoid cyclases as well as noncanonical class II TCs and inspect their sequences, structures, mechanisms, and structure-guided engineering studies.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.