{"title":"转录因子 Tec1 和 Tec2 通过线粒体氧化代谢的增加在卢氏粘菌的茎髓生长和病毒性中发挥关键作用","authors":"","doi":"10.1007/s12275-023-00096-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Mucormycosis is a lethal and difficult-to-treat fungal infection caused by fungi of the order Mucorales. <em>Mucor lusitanicus,</em> a member of Mucorales, is commonly used as a model to understand disease pathogenesis. However, transcriptional control of hyphal growth and virulence in Mucorales is poorly understood. This study aimed to investigate the role of Tec proteins, which belong to the TEA/ATTS transcription factor family, in the hyphal development and virulence of <em>M. lusitanicus</em>. Unlike in the genome of Ascomycetes and Basidiomycetes, which have a single Tec homologue, in the genome of Mucorales, two Tec homologues, Tec1 and Tec2, were found, except in that of <em>Phycomyces blakesleeanus</em>, with only one Tec homologue. <em>tec1</em> and <em>tec2</em> overexpression in <em>M. lusitanicus</em> increased mycelial growth, mitochondrial content and activity, expression of the rhizoferrin synthetase-encoding gene <em>rfs</em>, and virulence in nematodes and wax moth larvae but decreased cAMP levels and protein kinase A (PKA) activity. Furthermore, <em>tec1</em>- and <em>tec2</em>-overexpressing strains required adequate mitochondrial metabolism to promote the virulent phenotype. The heterotrimeric G beta subunit 1-encoding gene deletant strain (Δ<em>gpb1</em>) increased cAMP-PKA activity, downregulation of both <em>tec</em> genes, decreased both virulence and hyphal development, but <em>tec1</em> and <em>tec2</em> overexpression restored these defects. Overexpression of allele-mutated variants of Tec1(S332A) and Tec2(S168A) in the putative phosphorylation sites for PKA increased both virulence and hyphal growth of Δ<em>gpb1</em>. These findings suggest that Tec homologues promote mycelial development and virulence by enhancing mitochondrial metabolism and rhizoferrin accumulation, providing new information for the rational control of the virulent phenotype of <em>M. lusitanicus</em>.</p>","PeriodicalId":16546,"journal":{"name":"Journal of Microbiology","volume":"70 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcription Factors Tec1 and Tec2 Play Key Roles in the Hyphal Growth and Virulence of Mucor lusitanicus Through Increased Mitochondrial Oxidative Metabolism\",\"authors\":\"\",\"doi\":\"10.1007/s12275-023-00096-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Mucormycosis is a lethal and difficult-to-treat fungal infection caused by fungi of the order Mucorales. <em>Mucor lusitanicus,</em> a member of Mucorales, is commonly used as a model to understand disease pathogenesis. However, transcriptional control of hyphal growth and virulence in Mucorales is poorly understood. This study aimed to investigate the role of Tec proteins, which belong to the TEA/ATTS transcription factor family, in the hyphal development and virulence of <em>M. lusitanicus</em>. Unlike in the genome of Ascomycetes and Basidiomycetes, which have a single Tec homologue, in the genome of Mucorales, two Tec homologues, Tec1 and Tec2, were found, except in that of <em>Phycomyces blakesleeanus</em>, with only one Tec homologue. <em>tec1</em> and <em>tec2</em> overexpression in <em>M. lusitanicus</em> increased mycelial growth, mitochondrial content and activity, expression of the rhizoferrin synthetase-encoding gene <em>rfs</em>, and virulence in nematodes and wax moth larvae but decreased cAMP levels and protein kinase A (PKA) activity. Furthermore, <em>tec1</em>- and <em>tec2</em>-overexpressing strains required adequate mitochondrial metabolism to promote the virulent phenotype. The heterotrimeric G beta subunit 1-encoding gene deletant strain (Δ<em>gpb1</em>) increased cAMP-PKA activity, downregulation of both <em>tec</em> genes, decreased both virulence and hyphal development, but <em>tec1</em> and <em>tec2</em> overexpression restored these defects. Overexpression of allele-mutated variants of Tec1(S332A) and Tec2(S168A) in the putative phosphorylation sites for PKA increased both virulence and hyphal growth of Δ<em>gpb1</em>. These findings suggest that Tec homologues promote mycelial development and virulence by enhancing mitochondrial metabolism and rhizoferrin accumulation, providing new information for the rational control of the virulent phenotype of <em>M. lusitanicus</em>.</p>\",\"PeriodicalId\":16546,\"journal\":{\"name\":\"Journal of Microbiology\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12275-023-00096-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12275-023-00096-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Transcription Factors Tec1 and Tec2 Play Key Roles in the Hyphal Growth and Virulence of Mucor lusitanicus Through Increased Mitochondrial Oxidative Metabolism
Abstract
Mucormycosis is a lethal and difficult-to-treat fungal infection caused by fungi of the order Mucorales. Mucor lusitanicus, a member of Mucorales, is commonly used as a model to understand disease pathogenesis. However, transcriptional control of hyphal growth and virulence in Mucorales is poorly understood. This study aimed to investigate the role of Tec proteins, which belong to the TEA/ATTS transcription factor family, in the hyphal development and virulence of M. lusitanicus. Unlike in the genome of Ascomycetes and Basidiomycetes, which have a single Tec homologue, in the genome of Mucorales, two Tec homologues, Tec1 and Tec2, were found, except in that of Phycomyces blakesleeanus, with only one Tec homologue. tec1 and tec2 overexpression in M. lusitanicus increased mycelial growth, mitochondrial content and activity, expression of the rhizoferrin synthetase-encoding gene rfs, and virulence in nematodes and wax moth larvae but decreased cAMP levels and protein kinase A (PKA) activity. Furthermore, tec1- and tec2-overexpressing strains required adequate mitochondrial metabolism to promote the virulent phenotype. The heterotrimeric G beta subunit 1-encoding gene deletant strain (Δgpb1) increased cAMP-PKA activity, downregulation of both tec genes, decreased both virulence and hyphal development, but tec1 and tec2 overexpression restored these defects. Overexpression of allele-mutated variants of Tec1(S332A) and Tec2(S168A) in the putative phosphorylation sites for PKA increased both virulence and hyphal growth of Δgpb1. These findings suggest that Tec homologues promote mycelial development and virulence by enhancing mitochondrial metabolism and rhizoferrin accumulation, providing new information for the rational control of the virulent phenotype of M. lusitanicus.
期刊介绍:
Publishes papers that deal with research on microorganisms, including archaea, bacteria, yeasts, fungi, microalgae, protozoa, and simple eukaryotic microorganisms. Topics considered for publication include Microbial Systematics, Evolutionary Microbiology, Microbial Ecology, Environmental Microbiology, Microbial Genetics, Genomics, Molecular Biology, Microbial Physiology, Biochemistry, Microbial Pathogenesis, Host-Microbe Interaction, Systems Microbiology, Synthetic Microbiology, Bioinformatics and Virology. Manuscripts dealing with simple identification of microorganism(s), cloning of a known gene and its expression in a microbial host, and clinical statistics will not be considered for publication by JM.