Yunke Li, Junjun Ma, Chenxu Yang, Jianrui Niu, Yonghuan Bian, Ruicheng Chen, Puming Zhang, Jing Zhang, Chun Liu
{"title":"带纺锤形脱盐室的新型流动电极电容式去离子装置","authors":"Yunke Li, Junjun Ma, Chenxu Yang, Jianrui Niu, Yonghuan Bian, Ruicheng Chen, Puming Zhang, Jing Zhang, Chun Liu","doi":"10.1007/s11783-024-1800-y","DOIUrl":null,"url":null,"abstract":"<p>Flow-electrode capacitive deionization (FCDI) is an innovative technology in which an intermediate chamber plays an important role in the desalination process. However, relatively few studies have been conducted on the structures of these intermediate chambers. In this study, we propose a novel flow-electrode capacitive deionization device with a spindle-shaped inlet chamber (S-FCDI). The desalination rate of the S-FCDI under optimal operating conditions was 36% higher than that of the FCDI device with a conventional rectangular chamber (R-FCDI). The spindle-shaped chamber transferred 1.2 µmol more ions than the rectangular chamber, based on energy per joule. Additionally, we performed a detailed analysis of different inlet chamber shapes using computational fluid dynamics software. We concluded that S-FCDI has a relatively low flow resistance and almost no stagnation zone. This provides unique insights into the development of intermediate chambers. This study may contribute to the improvement of the desalination performance in industrial applications of FCDI.</p>","PeriodicalId":12720,"journal":{"name":"Frontiers of Environmental Science & Engineering","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2023-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel flow electrode capacitive deionization device with spindle-shaped desalting chamber\",\"authors\":\"Yunke Li, Junjun Ma, Chenxu Yang, Jianrui Niu, Yonghuan Bian, Ruicheng Chen, Puming Zhang, Jing Zhang, Chun Liu\",\"doi\":\"10.1007/s11783-024-1800-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Flow-electrode capacitive deionization (FCDI) is an innovative technology in which an intermediate chamber plays an important role in the desalination process. However, relatively few studies have been conducted on the structures of these intermediate chambers. In this study, we propose a novel flow-electrode capacitive deionization device with a spindle-shaped inlet chamber (S-FCDI). The desalination rate of the S-FCDI under optimal operating conditions was 36% higher than that of the FCDI device with a conventional rectangular chamber (R-FCDI). The spindle-shaped chamber transferred 1.2 µmol more ions than the rectangular chamber, based on energy per joule. Additionally, we performed a detailed analysis of different inlet chamber shapes using computational fluid dynamics software. We concluded that S-FCDI has a relatively low flow resistance and almost no stagnation zone. This provides unique insights into the development of intermediate chambers. This study may contribute to the improvement of the desalination performance in industrial applications of FCDI.</p>\",\"PeriodicalId\":12720,\"journal\":{\"name\":\"Frontiers of Environmental Science & Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Environmental Science & Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11783-024-1800-y\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Environmental Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11783-024-1800-y","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
A novel flow electrode capacitive deionization device with spindle-shaped desalting chamber
Flow-electrode capacitive deionization (FCDI) is an innovative technology in which an intermediate chamber plays an important role in the desalination process. However, relatively few studies have been conducted on the structures of these intermediate chambers. In this study, we propose a novel flow-electrode capacitive deionization device with a spindle-shaped inlet chamber (S-FCDI). The desalination rate of the S-FCDI under optimal operating conditions was 36% higher than that of the FCDI device with a conventional rectangular chamber (R-FCDI). The spindle-shaped chamber transferred 1.2 µmol more ions than the rectangular chamber, based on energy per joule. Additionally, we performed a detailed analysis of different inlet chamber shapes using computational fluid dynamics software. We concluded that S-FCDI has a relatively low flow resistance and almost no stagnation zone. This provides unique insights into the development of intermediate chambers. This study may contribute to the improvement of the desalination performance in industrial applications of FCDI.
期刊介绍:
Frontiers of Environmental Science & Engineering (FESE) is an international journal for researchers interested in a wide range of environmental disciplines. The journal''s aim is to advance and disseminate knowledge in all main branches of environmental science & engineering. The journal emphasizes papers in developing fields, as well as papers showing the interaction between environmental disciplines and other disciplines.
FESE is a bi-monthly journal. Its peer-reviewed contents consist of a broad blend of reviews, research papers, policy analyses, short communications, and opinions. Nonscheduled “special issue” and "hot topic", including a review article followed by a couple of related research articles, are organized to publish novel contributions and breaking results on all aspects of environmental field.