{"title":"干体液和模拟体液条件下选择性激光熔化不锈钢 316L 的制造工艺-微观结构-生物分布之间的关系","authors":"Suryank Dwivedi, Amit Rai Dixit, Alok Kumar Das","doi":"10.1007/s40684-023-00578-5","DOIUrl":null,"url":null,"abstract":"<p>This study aims to compare the microstructural and biotribological behavior of additively manufactured and commercially available stainless steel 316L (SS 316L) implants under simulated body fluid. The surface integrity, microstructures, and micro-hardness characterizations were performed. FESEM micrographs and 3D surface profiles dictate that the specimen is manufactured using a bi-directional 67º rot-scanning strategy. Further, the microstructure, XRD, and micro-hardness outcomes dictate that the selective laser melted (SLMed) sample has an anisotropic fine-grained (18.49 µm) gamma austenite phase with an improved hardness of 280.35HV<sub>0.05,</sub> which is 146% higher compared to casted counterpart. In-vitro state biotribological results indicate that the SLMed part has a minimum coefficient of friction (COF: 0.287) value under simulated body fluid, which is 58% less than the casted part (COF: 0.494), and an improved volumetric wear loss at different loading conditions was also observed. The obtained outcomes dictate that selective laser melting is a better processing route to manufacture SS 316L permanent implants with enhanced microstructural, mechanical, and biotribological behavior.</p>","PeriodicalId":14238,"journal":{"name":"International Journal of Precision Engineering and Manufacturing-Green Technology","volume":"13 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Relationship Between Manufacturing Routes-Microstructure-Biotribology of Selective Laser Melted Stainless Steel 316L Under Dry and Simulated Body Fluid\",\"authors\":\"Suryank Dwivedi, Amit Rai Dixit, Alok Kumar Das\",\"doi\":\"10.1007/s40684-023-00578-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aims to compare the microstructural and biotribological behavior of additively manufactured and commercially available stainless steel 316L (SS 316L) implants under simulated body fluid. The surface integrity, microstructures, and micro-hardness characterizations were performed. FESEM micrographs and 3D surface profiles dictate that the specimen is manufactured using a bi-directional 67º rot-scanning strategy. Further, the microstructure, XRD, and micro-hardness outcomes dictate that the selective laser melted (SLMed) sample has an anisotropic fine-grained (18.49 µm) gamma austenite phase with an improved hardness of 280.35HV<sub>0.05,</sub> which is 146% higher compared to casted counterpart. In-vitro state biotribological results indicate that the SLMed part has a minimum coefficient of friction (COF: 0.287) value under simulated body fluid, which is 58% less than the casted part (COF: 0.494), and an improved volumetric wear loss at different loading conditions was also observed. The obtained outcomes dictate that selective laser melting is a better processing route to manufacture SS 316L permanent implants with enhanced microstructural, mechanical, and biotribological behavior.</p>\",\"PeriodicalId\":14238,\"journal\":{\"name\":\"International Journal of Precision Engineering and Manufacturing-Green Technology\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Precision Engineering and Manufacturing-Green Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40684-023-00578-5\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing-Green Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40684-023-00578-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
A Relationship Between Manufacturing Routes-Microstructure-Biotribology of Selective Laser Melted Stainless Steel 316L Under Dry and Simulated Body Fluid
This study aims to compare the microstructural and biotribological behavior of additively manufactured and commercially available stainless steel 316L (SS 316L) implants under simulated body fluid. The surface integrity, microstructures, and micro-hardness characterizations were performed. FESEM micrographs and 3D surface profiles dictate that the specimen is manufactured using a bi-directional 67º rot-scanning strategy. Further, the microstructure, XRD, and micro-hardness outcomes dictate that the selective laser melted (SLMed) sample has an anisotropic fine-grained (18.49 µm) gamma austenite phase with an improved hardness of 280.35HV0.05, which is 146% higher compared to casted counterpart. In-vitro state biotribological results indicate that the SLMed part has a minimum coefficient of friction (COF: 0.287) value under simulated body fluid, which is 58% less than the casted part (COF: 0.494), and an improved volumetric wear loss at different loading conditions was also observed. The obtained outcomes dictate that selective laser melting is a better processing route to manufacture SS 316L permanent implants with enhanced microstructural, mechanical, and biotribological behavior.
期刊介绍:
Green Technology aspects of precision engineering and manufacturing are becoming ever more important in current and future technologies. New knowledge in this field will aid in the advancement of various technologies that are needed to gain industrial competitiveness. To this end IJPEM - Green Technology aims to disseminate relevant developments and applied research works of high quality to the international community through efficient and rapid publication. IJPEM - Green Technology covers novel research contributions in all aspects of "Green" precision engineering and manufacturing.