Brigitte J Bouman, Yasmin Demerdash, Shubhankar Sood, Florian Grünschläger, Franziska Pilz, Abdul R Itani, Andrea Kuck, Valérie Marot-Lassauzaie, Simon Haas, Laleh Haghverdi, Marieke Ag Essers
{"title":"单细胞时间序列分析揭示了 HSPC 对炎症反应的动态变化。","authors":"Brigitte J Bouman, Yasmin Demerdash, Shubhankar Sood, Florian Grünschläger, Franziska Pilz, Abdul R Itani, Andrea Kuck, Valérie Marot-Lassauzaie, Simon Haas, Laleh Haghverdi, Marieke Ag Essers","doi":"10.26508/lsa.202302309","DOIUrl":null,"url":null,"abstract":"Hematopoietic stem and progenitor cells (HSPCs) are known to respond to acute inflammation; however, little is understood about the dynamics and heterogeneity of these stress responses in HSPCs. Here, we performed single-cell sequencing during the sensing, response, and recovery phases of the inflammatory response of HSPCs to treatment (a total of 10,046 cells from four time points spanning the first 72 h of response) with the pro-inflammatory cytokine IFNα to investigate the HSPCs' dynamic changes during acute inflammation. We developed the essential novel computational approaches to process and analyze the resulting single-cell time series dataset. This includes an unbiased cell type annotation and abundance analysis post inflammation, tools for identification of global and cell type-specific responding genes, and a semi-supervised linear regression approach for response pseudotime reconstruction. We discovered a variety of different gene responses of the HSPCs to the treatment. Interestingly, we were able to associate a global reduced myeloid differentiation program and a locally enhanced pyroptosis activity with reduced myeloid progenitor and differentiated cells after IFNα treatment. Altogether, the single-cell time series analyses have allowed us to unbiasedly study the heterogeneous and dynamic impact of IFNα on the HSPCs.","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"22 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Single-cell time series analysis reveals the dynamics of HSPC response to inflammation.\",\"authors\":\"Brigitte J Bouman, Yasmin Demerdash, Shubhankar Sood, Florian Grünschläger, Franziska Pilz, Abdul R Itani, Andrea Kuck, Valérie Marot-Lassauzaie, Simon Haas, Laleh Haghverdi, Marieke Ag Essers\",\"doi\":\"10.26508/lsa.202302309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hematopoietic stem and progenitor cells (HSPCs) are known to respond to acute inflammation; however, little is understood about the dynamics and heterogeneity of these stress responses in HSPCs. Here, we performed single-cell sequencing during the sensing, response, and recovery phases of the inflammatory response of HSPCs to treatment (a total of 10,046 cells from four time points spanning the first 72 h of response) with the pro-inflammatory cytokine IFNα to investigate the HSPCs' dynamic changes during acute inflammation. We developed the essential novel computational approaches to process and analyze the resulting single-cell time series dataset. This includes an unbiased cell type annotation and abundance analysis post inflammation, tools for identification of global and cell type-specific responding genes, and a semi-supervised linear regression approach for response pseudotime reconstruction. We discovered a variety of different gene responses of the HSPCs to the treatment. Interestingly, we were able to associate a global reduced myeloid differentiation program and a locally enhanced pyroptosis activity with reduced myeloid progenitor and differentiated cells after IFNα treatment. Altogether, the single-cell time series analyses have allowed us to unbiasedly study the heterogeneous and dynamic impact of IFNα on the HSPCs.\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202302309\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202302309","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Single-cell time series analysis reveals the dynamics of HSPC response to inflammation.
Hematopoietic stem and progenitor cells (HSPCs) are known to respond to acute inflammation; however, little is understood about the dynamics and heterogeneity of these stress responses in HSPCs. Here, we performed single-cell sequencing during the sensing, response, and recovery phases of the inflammatory response of HSPCs to treatment (a total of 10,046 cells from four time points spanning the first 72 h of response) with the pro-inflammatory cytokine IFNα to investigate the HSPCs' dynamic changes during acute inflammation. We developed the essential novel computational approaches to process and analyze the resulting single-cell time series dataset. This includes an unbiased cell type annotation and abundance analysis post inflammation, tools for identification of global and cell type-specific responding genes, and a semi-supervised linear regression approach for response pseudotime reconstruction. We discovered a variety of different gene responses of the HSPCs to the treatment. Interestingly, we were able to associate a global reduced myeloid differentiation program and a locally enhanced pyroptosis activity with reduced myeloid progenitor and differentiated cells after IFNα treatment. Altogether, the single-cell time series analyses have allowed us to unbiasedly study the heterogeneous and dynamic impact of IFNα on the HSPCs.
期刊介绍:
Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.