多通道受控源音频磁暴观测的电容耦合效应和电容解耦

IF 0.7 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
{"title":"多通道受控源音频磁暴观测的电容耦合效应和电容解耦","authors":"","doi":"10.1007/s11770-023-1037-8","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Controlled-source audio magnetotellurics, which is a common technology in geophysical surveys, typically uses the multichannel mode of data acquisition. Often, a capacitive coupling effect occurs among the multiple receiving wires and receiving electrodes and the earth. This effect causes the distortion of the observed apparent resistivity and phase curves. The capacitive coupling of the observation mode is simulated using an equivalent circuit model, and the characteristics of the influence of the length of the receiving wire and grounding resistance of the electrode on capacitive coupling are investigated via the forward simulation of several typical models. The capacitive decoupling of a device for controlled-source audio geomagnetic observation is studied and applied to process the measured data from the Hongtoushan mining area in Liaoning Province, China. This approach effectively weakens the capacitance coupling effect and improves observation quality, and the inversion results match well with known geological information. This study examines the capacitive decoupling technique and offers a scientific foundation for the standardization of the controlled-source audio geomagnetic data gathering technology.</p>","PeriodicalId":55500,"journal":{"name":"Applied Geophysics","volume":"18 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Capacitively coupled effect and capacitive decoupling of multichannel controlled-source audio magnetotellurics observations\",\"authors\":\"\",\"doi\":\"10.1007/s11770-023-1037-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Controlled-source audio magnetotellurics, which is a common technology in geophysical surveys, typically uses the multichannel mode of data acquisition. Often, a capacitive coupling effect occurs among the multiple receiving wires and receiving electrodes and the earth. This effect causes the distortion of the observed apparent resistivity and phase curves. The capacitive coupling of the observation mode is simulated using an equivalent circuit model, and the characteristics of the influence of the length of the receiving wire and grounding resistance of the electrode on capacitive coupling are investigated via the forward simulation of several typical models. The capacitive decoupling of a device for controlled-source audio geomagnetic observation is studied and applied to process the measured data from the Hongtoushan mining area in Liaoning Province, China. This approach effectively weakens the capacitance coupling effect and improves observation quality, and the inversion results match well with known geological information. This study examines the capacitive decoupling technique and offers a scientific foundation for the standardization of the controlled-source audio geomagnetic data gathering technology.</p>\",\"PeriodicalId\":55500,\"journal\":{\"name\":\"Applied Geophysics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11770-023-1037-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geophysics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11770-023-1037-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 地球物理勘测中常用的可控源音频磁层探测技术通常采用多通道数据采集模式。通常情况下,多根接收线和接收电极与大地之间会产生电容耦合效应。这种效应会导致观测到的视电阻率和相位曲线失真。利用等效电路模型模拟了观测模式的电容耦合,并通过几个典型模型的正演模拟,研究了接收线长度和电极接地电阻对电容耦合的影响特性。研究了可控源音频地磁观测装置的电容解耦,并将其应用于处理中国辽宁省红透山矿区的测量数据。该方法有效削弱了电容耦合效应,提高了观测质量,反演结果与已知地质信息吻合良好。这项研究探讨了电容去耦技术,为受控源音频地磁数据采集技术的标准化提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capacitively coupled effect and capacitive decoupling of multichannel controlled-source audio magnetotellurics observations

Abstract

Controlled-source audio magnetotellurics, which is a common technology in geophysical surveys, typically uses the multichannel mode of data acquisition. Often, a capacitive coupling effect occurs among the multiple receiving wires and receiving electrodes and the earth. This effect causes the distortion of the observed apparent resistivity and phase curves. The capacitive coupling of the observation mode is simulated using an equivalent circuit model, and the characteristics of the influence of the length of the receiving wire and grounding resistance of the electrode on capacitive coupling are investigated via the forward simulation of several typical models. The capacitive decoupling of a device for controlled-source audio geomagnetic observation is studied and applied to process the measured data from the Hongtoushan mining area in Liaoning Province, China. This approach effectively weakens the capacitance coupling effect and improves observation quality, and the inversion results match well with known geological information. This study examines the capacitive decoupling technique and offers a scientific foundation for the standardization of the controlled-source audio geomagnetic data gathering technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Geophysics
Applied Geophysics 地学-地球化学与地球物理
CiteScore
1.50
自引率
14.30%
发文量
912
审稿时长
2 months
期刊介绍: The journal is designed to provide an academic realm for a broad blend of academic and industry papers to promote rapid communication and exchange of ideas between Chinese and world-wide geophysicists. The publication covers the applications of geoscience, geophysics, and related disciplines in the fields of energy, resources, environment, disaster, engineering, information, military, and surveying.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信