{"title":"小胶质细胞 APOE4:多则少,少则多","authors":"Ghazaleh Eskandari-Sedighi, Mathew Blurton-Jones","doi":"10.1186/s13024-023-00693-6","DOIUrl":null,"url":null,"abstract":"Apolipoprotein E (APOE) is the single greatest genetic risk factor for late onset Alzheimer’s disease (AD). Yet, the cell-specific effects of APOE on microglia function have remained unclear. Fortunately, two comprehensive new studies published in the latest issue of Nature Immunology have employed complementary gain-of-function and loss-of-function approaches to provide critical new insight into the impact of microglial APOE on AD pathogenesis.","PeriodicalId":18800,"journal":{"name":"Molecular Neurodegeneration","volume":"13 1","pages":""},"PeriodicalIF":14.9000,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microglial APOE4: more is less and less is more\",\"authors\":\"Ghazaleh Eskandari-Sedighi, Mathew Blurton-Jones\",\"doi\":\"10.1186/s13024-023-00693-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Apolipoprotein E (APOE) is the single greatest genetic risk factor for late onset Alzheimer’s disease (AD). Yet, the cell-specific effects of APOE on microglia function have remained unclear. Fortunately, two comprehensive new studies published in the latest issue of Nature Immunology have employed complementary gain-of-function and loss-of-function approaches to provide critical new insight into the impact of microglial APOE on AD pathogenesis.\",\"PeriodicalId\":18800,\"journal\":{\"name\":\"Molecular Neurodegeneration\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":14.9000,\"publicationDate\":\"2023-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Neurodegeneration\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13024-023-00693-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurodegeneration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13024-023-00693-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Apolipoprotein E (APOE) is the single greatest genetic risk factor for late onset Alzheimer’s disease (AD). Yet, the cell-specific effects of APOE on microglia function have remained unclear. Fortunately, two comprehensive new studies published in the latest issue of Nature Immunology have employed complementary gain-of-function and loss-of-function approaches to provide critical new insight into the impact of microglial APOE on AD pathogenesis.
期刊介绍:
Molecular Neurodegeneration, an open-access, peer-reviewed journal, comprehensively covers neurodegeneration research at the molecular and cellular levels.
Neurodegenerative diseases, such as Alzheimer's, Parkinson's, Huntington's, and prion diseases, fall under its purview. These disorders, often linked to advanced aging and characterized by varying degrees of dementia, pose a significant public health concern with the growing aging population. Recent strides in understanding the molecular and cellular mechanisms of these neurodegenerative disorders offer valuable insights into their pathogenesis.