Binglong Zhang, Hong Duan, Joshua Kavaler, Lu Wei, Daniel F. Eberl, Eric C. Lai
{"title":"一个非神经miRNA集群通过抑制两个神经目标介导听力","authors":"Binglong Zhang, Hong Duan, Joshua Kavaler, Lu Wei, Daniel F. Eberl, Eric C. Lai","doi":"10.1101/gad.351052.123","DOIUrl":null,"url":null,"abstract":"We show here that <em>mir-279/996</em> are absolutely essential for development and function of Johnston's organ (JO), the primary proprioceptive and auditory organ in <em>Drosophila</em>. Their deletion results in highly aberrant cell fate determination, including loss of scolopale cells and ectopic neurons, and mutants are electrophysiologically deaf. In vivo activity sensors and mosaic analyses indicate that these seed-related miRNAs function autonomously to suppress neural fate in nonneuronal cells. Finally, genetic interactions pinpoint two neural targets (<em>elav</em> and <em>insensible</em>) that underlie miRNA mutant JO phenotypes. This work uncovers how critical post-transcriptional regulation of specific miRNA targets governs cell specification and function of the auditory system.","PeriodicalId":12591,"journal":{"name":"Genes & development","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nonneural miRNA cluster mediates hearing via repression of two neural targets\",\"authors\":\"Binglong Zhang, Hong Duan, Joshua Kavaler, Lu Wei, Daniel F. Eberl, Eric C. Lai\",\"doi\":\"10.1101/gad.351052.123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show here that <em>mir-279/996</em> are absolutely essential for development and function of Johnston's organ (JO), the primary proprioceptive and auditory organ in <em>Drosophila</em>. Their deletion results in highly aberrant cell fate determination, including loss of scolopale cells and ectopic neurons, and mutants are electrophysiologically deaf. In vivo activity sensors and mosaic analyses indicate that these seed-related miRNAs function autonomously to suppress neural fate in nonneuronal cells. Finally, genetic interactions pinpoint two neural targets (<em>elav</em> and <em>insensible</em>) that underlie miRNA mutant JO phenotypes. This work uncovers how critical post-transcriptional regulation of specific miRNA targets governs cell specification and function of the auditory system.\",\"PeriodicalId\":12591,\"journal\":{\"name\":\"Genes & development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gad.351052.123\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gad.351052.123","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
我们在这里发现,mir-279/996对于果蝇的主要本体感觉器官和听觉器官约翰斯顿器官(JO)的发育和功能是绝对必要的。它们的缺失会导致高度异常的细胞命运决定,包括鳞状细胞和异位神经元的缺失,而且突变体在电生理上是聋的。体内活动传感器和镶嵌分析表明,这些与种子有关的 miRNAs 具有抑制非神经元细胞神经命运的自主功能。最后,基因相互作用确定了两个神经靶标(elav 和 insensible),它们是 miRNA 突变体 JO 表型的基础。这项工作揭示了特定miRNA靶标的转录后关键调控是如何支配听觉系统的细胞规格和功能的。
A nonneural miRNA cluster mediates hearing via repression of two neural targets
We show here that mir-279/996 are absolutely essential for development and function of Johnston's organ (JO), the primary proprioceptive and auditory organ in Drosophila. Their deletion results in highly aberrant cell fate determination, including loss of scolopale cells and ectopic neurons, and mutants are electrophysiologically deaf. In vivo activity sensors and mosaic analyses indicate that these seed-related miRNAs function autonomously to suppress neural fate in nonneuronal cells. Finally, genetic interactions pinpoint two neural targets (elav and insensible) that underlie miRNA mutant JO phenotypes. This work uncovers how critical post-transcriptional regulation of specific miRNA targets governs cell specification and function of the auditory system.
期刊介绍:
Genes & Development is a research journal published in association with The Genetics Society. It publishes high-quality research papers in the areas of molecular biology, molecular genetics, and related fields. The journal features various research formats including Research papers, short Research Communications, and Resource/Methodology papers.
Genes & Development has gained recognition and is considered as one of the Top Five Research Journals in the field of Molecular Biology and Genetics. It has an impressive Impact Factor of 12.89. The journal is ranked #2 among Developmental Biology research journals, #5 in Genetics and Heredity, and is among the Top 20 in Cell Biology (according to ISI Journal Citation Reports®, 2021).