{"title":"使用生物表面活性剂和纳米颗粒的矿物油基钻井液配方具有良好的流变特性和出色的 H2S 清除能力","authors":"Sagheer A. Onaizi","doi":"10.1016/j.jciso.2023.100100","DOIUrl":null,"url":null,"abstract":"<div><p>There are two commonly used drilling fluids, namely water-based muds (WBMs) and oil-based muds (OBMs); however, the latter type is more desirable for drilling unconventional oilfield reserves. To account for the potential encounter of hydrogen sulfide (H<sub>2</sub>S) while drilling, the utilized OBMs should contain scavenger(s) with an effective H<sub>2</sub>S mitigation capability in order to in-situ capture this very lethal and corrosive gas. To the best of our knowledge, studies on incorporating H<sub>2</sub>S scavengers in OBMs and their testing are still greatly lacking in open literature. Thus, this study contributes into the filling of this gap by preparing a mineral oil-based drilling mud (MOBM) containing potassium permanganate as a promising, widely available, safe, and cheap H<sub>2</sub>S scavenger. The MOBM also comprised other ingredients including rhamnolipid biosurfactant as an emulsifier and octadecanethiol-modified (i.e., hydrophobized) zinc nanoparticles (serving as weighting agent). These materials have not been widely utilized so far in open literature for the preparation of MOBM. The results obtained from this study demonstrated that this mud could fully scavenge H<sub>2</sub>S for up to 22.7 h (i.e., breakthrough time), and it took about 63 h for the MOBM to become fully saturated with H<sub>2</sub>S. The scavenged amounts of H<sub>2</sub>S at these times reached 324.4 and 485.8 g/barrel MOBM, respectively. The formulated MOBM also displayed an appropriate non-Newtonian shear thinning behavior, where the apparent viscosity dropped sharply from about 1.96 to 0.71 Pa.s upon increasing the shear rate to from 1 to 10 s<sup>−1</sup>, followed by a gradual decrease down to 0.31 Pa.s at a shear rate of 1000 s<sup>−1</sup>. Additionally, the formulated mud is able to dissipate a significant amount of thermal energy as inferred from its estimated high activation energy of 34.93 kJ/mol, suggesting a good thermal stability of the MOBM. The present study reveals the possibility of formulating mineral OBMs with effective H<sub>2</sub>S for safely drilling sour oil and gas reservoirs.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X23000272/pdfft?md5=5d66645bea69632dd455c90047158c11&pid=1-s2.0-S2666934X23000272-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Mineral oil-based drilling fluid formulation using biosurfactant and nanoparticles with good rheological behavior and excellent H2S scavenging capability\",\"authors\":\"Sagheer A. Onaizi\",\"doi\":\"10.1016/j.jciso.2023.100100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There are two commonly used drilling fluids, namely water-based muds (WBMs) and oil-based muds (OBMs); however, the latter type is more desirable for drilling unconventional oilfield reserves. To account for the potential encounter of hydrogen sulfide (H<sub>2</sub>S) while drilling, the utilized OBMs should contain scavenger(s) with an effective H<sub>2</sub>S mitigation capability in order to in-situ capture this very lethal and corrosive gas. To the best of our knowledge, studies on incorporating H<sub>2</sub>S scavengers in OBMs and their testing are still greatly lacking in open literature. Thus, this study contributes into the filling of this gap by preparing a mineral oil-based drilling mud (MOBM) containing potassium permanganate as a promising, widely available, safe, and cheap H<sub>2</sub>S scavenger. The MOBM also comprised other ingredients including rhamnolipid biosurfactant as an emulsifier and octadecanethiol-modified (i.e., hydrophobized) zinc nanoparticles (serving as weighting agent). These materials have not been widely utilized so far in open literature for the preparation of MOBM. The results obtained from this study demonstrated that this mud could fully scavenge H<sub>2</sub>S for up to 22.7 h (i.e., breakthrough time), and it took about 63 h for the MOBM to become fully saturated with H<sub>2</sub>S. The scavenged amounts of H<sub>2</sub>S at these times reached 324.4 and 485.8 g/barrel MOBM, respectively. The formulated MOBM also displayed an appropriate non-Newtonian shear thinning behavior, where the apparent viscosity dropped sharply from about 1.96 to 0.71 Pa.s upon increasing the shear rate to from 1 to 10 s<sup>−1</sup>, followed by a gradual decrease down to 0.31 Pa.s at a shear rate of 1000 s<sup>−1</sup>. Additionally, the formulated mud is able to dissipate a significant amount of thermal energy as inferred from its estimated high activation energy of 34.93 kJ/mol, suggesting a good thermal stability of the MOBM. The present study reveals the possibility of formulating mineral OBMs with effective H<sub>2</sub>S for safely drilling sour oil and gas reservoirs.</p></div>\",\"PeriodicalId\":73541,\"journal\":{\"name\":\"JCIS open\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666934X23000272/pdfft?md5=5d66645bea69632dd455c90047158c11&pid=1-s2.0-S2666934X23000272-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCIS open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666934X23000272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCIS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666934X23000272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Mineral oil-based drilling fluid formulation using biosurfactant and nanoparticles with good rheological behavior and excellent H2S scavenging capability
There are two commonly used drilling fluids, namely water-based muds (WBMs) and oil-based muds (OBMs); however, the latter type is more desirable for drilling unconventional oilfield reserves. To account for the potential encounter of hydrogen sulfide (H2S) while drilling, the utilized OBMs should contain scavenger(s) with an effective H2S mitigation capability in order to in-situ capture this very lethal and corrosive gas. To the best of our knowledge, studies on incorporating H2S scavengers in OBMs and their testing are still greatly lacking in open literature. Thus, this study contributes into the filling of this gap by preparing a mineral oil-based drilling mud (MOBM) containing potassium permanganate as a promising, widely available, safe, and cheap H2S scavenger. The MOBM also comprised other ingredients including rhamnolipid biosurfactant as an emulsifier and octadecanethiol-modified (i.e., hydrophobized) zinc nanoparticles (serving as weighting agent). These materials have not been widely utilized so far in open literature for the preparation of MOBM. The results obtained from this study demonstrated that this mud could fully scavenge H2S for up to 22.7 h (i.e., breakthrough time), and it took about 63 h for the MOBM to become fully saturated with H2S. The scavenged amounts of H2S at these times reached 324.4 and 485.8 g/barrel MOBM, respectively. The formulated MOBM also displayed an appropriate non-Newtonian shear thinning behavior, where the apparent viscosity dropped sharply from about 1.96 to 0.71 Pa.s upon increasing the shear rate to from 1 to 10 s−1, followed by a gradual decrease down to 0.31 Pa.s at a shear rate of 1000 s−1. Additionally, the formulated mud is able to dissipate a significant amount of thermal energy as inferred from its estimated high activation energy of 34.93 kJ/mol, suggesting a good thermal stability of the MOBM. The present study reveals the possibility of formulating mineral OBMs with effective H2S for safely drilling sour oil and gas reservoirs.