凹槽 "结构微弧氧化钛的细胞粘附、成骨和血管生成研究

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Yifan Fei , Wenyi Yang , Zhaoyang Guo , Haishui Sun , Fan Yang , Jingzhou Hu
{"title":"凹槽 \"结构微弧氧化钛的细胞粘附、成骨和血管生成研究","authors":"Yifan Fei ,&nbsp;Wenyi Yang ,&nbsp;Zhaoyang Guo ,&nbsp;Haishui Sun ,&nbsp;Fan Yang ,&nbsp;Jingzhou Hu","doi":"10.1016/j.apsadv.2023.100552","DOIUrl":null,"url":null,"abstract":"<div><p>The use of titanium alloy-based dental implant restorations has gained popularity due to their attractive properties. Current research on the surface modification of titanium materials primarily centers around the surface integration of various metal ions, the incorporation of different drugs, or other materials. By simply adjusting the process parameters of micro-arc oxidation, we were able to form a “groove” structure in titanium chips. Scanning Electron Microscopy (SEM) observations revealed that Bone Marrow Stem Cells (BMSCs) noticeably elongated along the “grooves”. Immunofluorescence results indicated an elevated expression of Osteocalcin (OCN) and CD31 in “groove” structure group. Furthermore, “groove” structure group also amplified the expression of osteogenic genes (Alkaline Phosphatase, ALP; Osteocalcin, OCN) and angiogenic genes (CD31, Vascular Endothelial Growth Factor, VEGF; Angiopoietin-2, ANG2; and Fibroblast Growth Factor, FGF) on the material surface (<em>P</em> &lt; 0.05). This study suggests that the “groove” structure enhances early cell adhesion on the material surface and improves osteogenic and angiogenic differentiation on the titanium surface, thereby providing potential research implications for enhancing the initial stability of implants.</p></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666523923001861/pdfft?md5=fe41d9207b7a640e20d9e9261a93fd6b&pid=1-s2.0-S2666523923001861-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Study of cell adhesion, osteogenesis, and angiogenesis of a “groove” structure micro-arc oxidation titanium\",\"authors\":\"Yifan Fei ,&nbsp;Wenyi Yang ,&nbsp;Zhaoyang Guo ,&nbsp;Haishui Sun ,&nbsp;Fan Yang ,&nbsp;Jingzhou Hu\",\"doi\":\"10.1016/j.apsadv.2023.100552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of titanium alloy-based dental implant restorations has gained popularity due to their attractive properties. Current research on the surface modification of titanium materials primarily centers around the surface integration of various metal ions, the incorporation of different drugs, or other materials. By simply adjusting the process parameters of micro-arc oxidation, we were able to form a “groove” structure in titanium chips. Scanning Electron Microscopy (SEM) observations revealed that Bone Marrow Stem Cells (BMSCs) noticeably elongated along the “grooves”. Immunofluorescence results indicated an elevated expression of Osteocalcin (OCN) and CD31 in “groove” structure group. Furthermore, “groove” structure group also amplified the expression of osteogenic genes (Alkaline Phosphatase, ALP; Osteocalcin, OCN) and angiogenic genes (CD31, Vascular Endothelial Growth Factor, VEGF; Angiopoietin-2, ANG2; and Fibroblast Growth Factor, FGF) on the material surface (<em>P</em> &lt; 0.05). This study suggests that the “groove” structure enhances early cell adhesion on the material surface and improves osteogenic and angiogenic differentiation on the titanium surface, thereby providing potential research implications for enhancing the initial stability of implants.</p></div>\",\"PeriodicalId\":34303,\"journal\":{\"name\":\"Applied Surface Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666523923001861/pdfft?md5=fe41d9207b7a640e20d9e9261a93fd6b&pid=1-s2.0-S2666523923001861-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666523923001861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523923001861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

以钛合金为基础的牙科植入修复体因其极具吸引力的特性而广受欢迎。目前,有关钛材料表面改性的研究主要集中在各种金属离子的表面整合、不同药物或其他材料的加入等方面。我们只需调整微弧氧化的工艺参数,就能在钛芯片上形成 "凹槽 "结构。扫描电子显微镜(SEM)观察发现,骨髓干细胞(BMSCs)明显沿着 "沟槽 "伸长。免疫荧光结果表明,"沟槽 "结构组的骨钙素(OCN)和 CD31 表达量增加。此外,"沟槽 "结构组还提高了材料表面成骨基因(碱性磷酸酶,ALP;骨钙素,OCN)和血管生成基因(CD31、血管内皮生长因子,VEGF;血管生成素-2,ANG2;成纤维细胞生长因子,FGF)的表达量(P <0.05)。这项研究表明,"凹槽 "结构增强了材料表面的早期细胞粘附,改善了钛表面的成骨和血管分化,从而为增强植入物的初期稳定性提供了潜在的研究意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of cell adhesion, osteogenesis, and angiogenesis of a “groove” structure micro-arc oxidation titanium

The use of titanium alloy-based dental implant restorations has gained popularity due to their attractive properties. Current research on the surface modification of titanium materials primarily centers around the surface integration of various metal ions, the incorporation of different drugs, or other materials. By simply adjusting the process parameters of micro-arc oxidation, we were able to form a “groove” structure in titanium chips. Scanning Electron Microscopy (SEM) observations revealed that Bone Marrow Stem Cells (BMSCs) noticeably elongated along the “grooves”. Immunofluorescence results indicated an elevated expression of Osteocalcin (OCN) and CD31 in “groove” structure group. Furthermore, “groove” structure group also amplified the expression of osteogenic genes (Alkaline Phosphatase, ALP; Osteocalcin, OCN) and angiogenic genes (CD31, Vascular Endothelial Growth Factor, VEGF; Angiopoietin-2, ANG2; and Fibroblast Growth Factor, FGF) on the material surface (P < 0.05). This study suggests that the “groove” structure enhances early cell adhesion on the material surface and improves osteogenic and angiogenic differentiation on the titanium surface, thereby providing potential research implications for enhancing the initial stability of implants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信