泛函 - 特征变种的 E 多项式:分支情况

IF 1.2 2区 数学 Q1 MATHEMATICS
Cheng Shu
{"title":"泛函 - 特征变种的 E 多项式:分支情况","authors":"Cheng Shu","doi":"10.1017/fms.2023.119","DOIUrl":null,"url":null,"abstract":"<p>For any branched double covering of compact Riemann surfaces, we consider the associated character varieties that are unitary in the global sense, which we call <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215154237435-0861:S2050509423001196:S2050509423001196_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\operatorname {\\mathrm {GL}}_n\\rtimes \\!&lt;\\!\\sigma {&gt;}$</span></span></img></span></span>-character varieties. We restrict the monodromies around the branch points to generic semi-simple conjugacy classes contained in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215154237435-0861:S2050509423001196:S2050509423001196_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\operatorname {\\mathrm {GL}}_n\\sigma $</span></span></img></span></span> and compute the E-polynomials of these character varieties using the character table of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215154237435-0861:S2050509423001196:S2050509423001196_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\operatorname {\\mathrm {GL}}_n(q)\\rtimes \\!&lt;\\!\\sigma \\!&gt;\\!$</span></span></img></span></span>. The result is expressed as the inner product of certain symmetric functions associated to the wreath product <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215154237435-0861:S2050509423001196:S2050509423001196_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$(\\mathbb {Z}/2\\mathbb {Z})^N\\rtimes \\mathfrak {S}_N$</span></span></img></span></span>. We are then led to a conjectural formula for the mixed Hodge polynomial, which involves (modified) Macdonald polynomials and wreath Macdonald polynomials.</p>","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E-Polynomials of Generic -Character Varieties: Branched Case\",\"authors\":\"Cheng Shu\",\"doi\":\"10.1017/fms.2023.119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For any branched double covering of compact Riemann surfaces, we consider the associated character varieties that are unitary in the global sense, which we call <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215154237435-0861:S2050509423001196:S2050509423001196_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\operatorname {\\\\mathrm {GL}}_n\\\\rtimes \\\\!&lt;\\\\!\\\\sigma {&gt;}$</span></span></img></span></span>-character varieties. We restrict the monodromies around the branch points to generic semi-simple conjugacy classes contained in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215154237435-0861:S2050509423001196:S2050509423001196_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\operatorname {\\\\mathrm {GL}}_n\\\\sigma $</span></span></img></span></span> and compute the E-polynomials of these character varieties using the character table of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215154237435-0861:S2050509423001196:S2050509423001196_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\operatorname {\\\\mathrm {GL}}_n(q)\\\\rtimes \\\\!&lt;\\\\!\\\\sigma \\\\!&gt;\\\\!$</span></span></img></span></span>. The result is expressed as the inner product of certain symmetric functions associated to the wreath product <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215154237435-0861:S2050509423001196:S2050509423001196_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$(\\\\mathbb {Z}/2\\\\mathbb {Z})^N\\\\rtimes \\\\mathfrak {S}_N$</span></span></img></span></span>. We are then led to a conjectural formula for the mixed Hodge polynomial, which involves (modified) Macdonald polynomials and wreath Macdonald polynomials.</p>\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2023.119\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.119","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于任何紧凑黎曼曲面的分支双覆盖,我们都会考虑在全局意义上具有单元性的相关特征变量,我们称之为 $\operatorname {\mathrm {GL}}_n\rtimes \!<\!\sigma {>}$ 特征变量。我们将分支点周围的单旋回限制为包含在 $\operatorname {mathrm {GL}}_n\sigma $ 中的一般半简单共轭类,并使用 $\operatorname {mathrm {GL}}_n(q)\rtimes \!<\!结果被表示为与花环积 $(\mathbb {Z}/2\mathbb {Z})^N\rtimes \mathfrak {S}_N$ 相关的某些对称函数的内积。然后,我们得出了混合霍奇多项式的猜想公式,它涉及(修正的)麦克唐纳多项式和花环麦克唐纳多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-Polynomials of Generic -Character Varieties: Branched Case

For any branched double covering of compact Riemann surfaces, we consider the associated character varieties that are unitary in the global sense, which we call $\operatorname {\mathrm {GL}}_n\rtimes \!<\!\sigma {>}$-character varieties. We restrict the monodromies around the branch points to generic semi-simple conjugacy classes contained in $\operatorname {\mathrm {GL}}_n\sigma $ and compute the E-polynomials of these character varieties using the character table of $\operatorname {\mathrm {GL}}_n(q)\rtimes \!<\!\sigma \!>\!$. The result is expressed as the inner product of certain symmetric functions associated to the wreath product $(\mathbb {Z}/2\mathbb {Z})^N\rtimes \mathfrak {S}_N$. We are then led to a conjectural formula for the mixed Hodge polynomial, which involves (modified) Macdonald polynomials and wreath Macdonald polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信