利用响应面方法对楔形上的 MHD 纳米流体进行热优化:敏感性分析

IF 5.4 2区 工程技术 Q1 ENGINEERING, AEROSPACE
Ahmed Zeeshan, Dilawar Hussain, Zaheer Asghar, Muhammad Mubashir Bhatti, Faisal Z. Duraihem
{"title":"利用响应面方法对楔形上的 MHD 纳米流体进行热优化:敏感性分析","authors":"Ahmed Zeeshan, Dilawar Hussain, Zaheer Asghar, Muhammad Mubashir Bhatti, Faisal Z. Duraihem","doi":"10.1016/j.jppr.2023.10.003","DOIUrl":null,"url":null,"abstract":"<p>It is well documented that heat transfer is enhanced with addition of nanosized particles in fluid. But, in a mechanical system there are variety of factors influences the heat transfer. Some factors are significant while others are not. In this paper, authors will discuss sensitivity of different input parameters such as <em>Le</em>, <em>Nt</em> and <em>Nb</em> on output responses <span><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi><mi is=\"true\">u</mi></mrow><mi is=\"true\">x</mi></msub></mrow></math></span> and <span><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">S</mi><mi is=\"true\">h</mi></mrow><mi is=\"true\">x</mi></msub></mrow></math></span>. To achieve this goal, the problem is modeled using basic conservation laws. The formulated model is a set of PDEs, which are converted to set of non-linear ODEs by using similarity transformation. Then these ODEs are solved numerically by using MATLAB built in package bvp4c and compared the numerical results with existing work and found good results. Sensitivity analysis is performed by employing RSM to determine the relationship between the input parameters such that <span><math><mrow is=\"true\"><mn is=\"true\">0.1</mn><mrow is=\"true\"><mo is=\"true\">≤</mo><mi is=\"true\">L</mi><mi is=\"true\">e</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">≤</mo></mrow><mn is=\"true\">1</mn></mrow></math></span>, <span><math><mrow is=\"true\"><mn is=\"true\">0.1</mn><mrow is=\"true\"><mo is=\"true\">≤</mo><mi is=\"true\">N</mi><mi is=\"true\">t</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">≤</mo></mrow><mn is=\"true\">1</mn></mrow></math></span> and <span><math><mrow is=\"true\"><mn is=\"true\">0.1</mn><mrow is=\"true\"><mo is=\"true\">≤</mo><mi is=\"true\">N</mi><mi is=\"true\">b</mi><mo is=\"true\" linebreak=\"goodbreak\" linebreakstyle=\"after\">≤</mo></mrow><mn is=\"true\">1</mn></mrow></math></span> and the output responses (<span><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi><mi is=\"true\">u</mi></mrow><mi is=\"true\">x</mi></msub></mrow></math></span> and <span><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">S</mi><mi is=\"true\">h</mi></mrow><mi is=\"true\">x</mi></msub></mrow></math></span>). ANOVA tables are generated by using RSM. By using the ANOVA tables the correlations between input parameters and output response are developed. To check the validity of correlated equations, the residuals are plotted graphically and show best correlations between input parameters and output responses. The high values of <span><math><mrow is=\"true\"><msup is=\"true\"><mi is=\"true\">R</mi><mn is=\"true\">2</mn></msup><mrow is=\"true\"><mo is=\"true\">=</mo><mn is=\"true\">98.65</mn></mrow></mrow></math></span> and <span><math><mrow is=\"true\"><mtext is=\"true\">Adj</mtext><msup is=\"true\"><mi is=\"true\">R</mi><mn is=\"true\">2</mn></msup><mrow is=\"true\"><mo is=\"true\">=</mo><mn is=\"true\">97.43</mn></mrow></mrow></math></span> for <span><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">N</mi><mi is=\"true\">u</mi></mrow><mi is=\"true\">x</mi></msub></mrow></math></span> and <span><math><mrow is=\"true\"><msup is=\"true\"><mi is=\"true\">R</mi><mn is=\"true\">2</mn></msup><mrow is=\"true\"><mo is=\"true\">=</mo><mn is=\"true\">97.83</mn></mrow></mrow></math></span> and <span><math><mrow is=\"true\"><mtext is=\"true\">Adj</mtext><msup is=\"true\"><mi is=\"true\">R</mi><mn is=\"true\">2</mn></msup><mrow is=\"true\"><mo is=\"true\">=</mo><mn is=\"true\">95.88</mn></mrow></mrow></math></span> for <span><math><mrow is=\"true\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\">S</mi><mi is=\"true\">h</mi></mrow><mi is=\"true\">x</mi></msub></mrow></math></span> demonstrates the high validity of ANOVA results to perform sensitivity analysis. Finally, we have conducted a sensitivity analysis of the responses and came to the important results that <em>Nt</em> and <em>Nb</em> is most sensitive to Nusselt number and Sherwood number respectively.</p>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"1 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal optimization of MHD nanofluid over a wedge by using response surface methodology: Sensitivity analysis\",\"authors\":\"Ahmed Zeeshan, Dilawar Hussain, Zaheer Asghar, Muhammad Mubashir Bhatti, Faisal Z. Duraihem\",\"doi\":\"10.1016/j.jppr.2023.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is well documented that heat transfer is enhanced with addition of nanosized particles in fluid. But, in a mechanical system there are variety of factors influences the heat transfer. Some factors are significant while others are not. In this paper, authors will discuss sensitivity of different input parameters such as <em>Le</em>, <em>Nt</em> and <em>Nb</em> on output responses <span><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">N</mi><mi is=\\\"true\\\">u</mi></mrow><mi is=\\\"true\\\">x</mi></msub></mrow></math></span> and <span><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi><mi is=\\\"true\\\">h</mi></mrow><mi is=\\\"true\\\">x</mi></msub></mrow></math></span>. To achieve this goal, the problem is modeled using basic conservation laws. The formulated model is a set of PDEs, which are converted to set of non-linear ODEs by using similarity transformation. Then these ODEs are solved numerically by using MATLAB built in package bvp4c and compared the numerical results with existing work and found good results. Sensitivity analysis is performed by employing RSM to determine the relationship between the input parameters such that <span><math><mrow is=\\\"true\\\"><mn is=\\\"true\\\">0.1</mn><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≤</mo><mi is=\\\"true\\\">L</mi><mi is=\\\"true\\\">e</mi><mo is=\\\"true\\\" linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">≤</mo></mrow><mn is=\\\"true\\\">1</mn></mrow></math></span>, <span><math><mrow is=\\\"true\\\"><mn is=\\\"true\\\">0.1</mn><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≤</mo><mi is=\\\"true\\\">N</mi><mi is=\\\"true\\\">t</mi><mo is=\\\"true\\\" linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">≤</mo></mrow><mn is=\\\"true\\\">1</mn></mrow></math></span> and <span><math><mrow is=\\\"true\\\"><mn is=\\\"true\\\">0.1</mn><mrow is=\\\"true\\\"><mo is=\\\"true\\\">≤</mo><mi is=\\\"true\\\">N</mi><mi is=\\\"true\\\">b</mi><mo is=\\\"true\\\" linebreak=\\\"goodbreak\\\" linebreakstyle=\\\"after\\\">≤</mo></mrow><mn is=\\\"true\\\">1</mn></mrow></math></span> and the output responses (<span><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">N</mi><mi is=\\\"true\\\">u</mi></mrow><mi is=\\\"true\\\">x</mi></msub></mrow></math></span> and <span><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi><mi is=\\\"true\\\">h</mi></mrow><mi is=\\\"true\\\">x</mi></msub></mrow></math></span>). ANOVA tables are generated by using RSM. By using the ANOVA tables the correlations between input parameters and output response are developed. To check the validity of correlated equations, the residuals are plotted graphically and show best correlations between input parameters and output responses. The high values of <span><math><mrow is=\\\"true\\\"><msup is=\\\"true\\\"><mi is=\\\"true\\\">R</mi><mn is=\\\"true\\\">2</mn></msup><mrow is=\\\"true\\\"><mo is=\\\"true\\\">=</mo><mn is=\\\"true\\\">98.65</mn></mrow></mrow></math></span> and <span><math><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">Adj</mtext><msup is=\\\"true\\\"><mi is=\\\"true\\\">R</mi><mn is=\\\"true\\\">2</mn></msup><mrow is=\\\"true\\\"><mo is=\\\"true\\\">=</mo><mn is=\\\"true\\\">97.43</mn></mrow></mrow></math></span> for <span><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">N</mi><mi is=\\\"true\\\">u</mi></mrow><mi is=\\\"true\\\">x</mi></msub></mrow></math></span> and <span><math><mrow is=\\\"true\\\"><msup is=\\\"true\\\"><mi is=\\\"true\\\">R</mi><mn is=\\\"true\\\">2</mn></msup><mrow is=\\\"true\\\"><mo is=\\\"true\\\">=</mo><mn is=\\\"true\\\">97.83</mn></mrow></mrow></math></span> and <span><math><mrow is=\\\"true\\\"><mtext is=\\\"true\\\">Adj</mtext><msup is=\\\"true\\\"><mi is=\\\"true\\\">R</mi><mn is=\\\"true\\\">2</mn></msup><mrow is=\\\"true\\\"><mo is=\\\"true\\\">=</mo><mn is=\\\"true\\\">95.88</mn></mrow></mrow></math></span> for <span><math><mrow is=\\\"true\\\"><msub is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">S</mi><mi is=\\\"true\\\">h</mi></mrow><mi is=\\\"true\\\">x</mi></msub></mrow></math></span> demonstrates the high validity of ANOVA results to perform sensitivity analysis. Finally, we have conducted a sensitivity analysis of the responses and came to the important results that <em>Nt</em> and <em>Nb</em> is most sensitive to Nusselt number and Sherwood number respectively.</p>\",\"PeriodicalId\":51341,\"journal\":{\"name\":\"Propulsion and Power Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Propulsion and Power Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jppr.2023.10.003\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Propulsion and Power Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jppr.2023.10.003","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

有资料表明,在流体中添加纳米颗粒可增强热传递。但是,在机械系统中,影响热传递的因素多种多样。有些因素很重要,有些因素则不重要。在本文中,作者将讨论 Le、Nt 和 Nb 等不同输入参数对输出响应 Nux 和 Shx 的敏感性。为实现这一目标,本文使用基本守恒定律对问题进行建模。所建立的模型是一组 PDE,通过相似性转换将其转换为一组非线性 ODE。然后使用 MATLAB 内置的 bvp4c 软件包对这些 ODE 进行数值求解,并将数值结果与现有工作进行比较,发现结果良好。采用 RSM 进行敏感性分析,以确定 0.1≤Le≤1、0.1≤Nt≤1 和 0.1≤Nb≤1 等输入参数与输出响应(Nux 和 Shx)之间的关系。方差分析表通过 RSM 生成。通过方差分析表,可以得出输入参数和输出响应之间的相关关系。为了检查相关方程的有效性,我们绘制了残差图,以显示输入参数和输出响应之间的最佳相关性。Nux 的 R2=98.65 和 AdjR2=97.43 值很高,Shx 的 R2=97.83 和 AdjR2=95.88 值很高,这表明方差分析结果对进行敏感性分析非常有效。最后,我们对响应进行了敏感性分析,得出了 Nt 和 Nb 分别对努塞尔特数和舍伍德数最敏感的重要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal optimization of MHD nanofluid over a wedge by using response surface methodology: Sensitivity analysis

It is well documented that heat transfer is enhanced with addition of nanosized particles in fluid. But, in a mechanical system there are variety of factors influences the heat transfer. Some factors are significant while others are not. In this paper, authors will discuss sensitivity of different input parameters such as Le, Nt and Nb on output responses Nux and Shx. To achieve this goal, the problem is modeled using basic conservation laws. The formulated model is a set of PDEs, which are converted to set of non-linear ODEs by using similarity transformation. Then these ODEs are solved numerically by using MATLAB built in package bvp4c and compared the numerical results with existing work and found good results. Sensitivity analysis is performed by employing RSM to determine the relationship between the input parameters such that 0.1Le1, 0.1Nt1 and 0.1Nb1 and the output responses (Nux and Shx). ANOVA tables are generated by using RSM. By using the ANOVA tables the correlations between input parameters and output response are developed. To check the validity of correlated equations, the residuals are plotted graphically and show best correlations between input parameters and output responses. The high values of R2=98.65 and AdjR2=97.43 for Nux and R2=97.83 and AdjR2=95.88 for Shx demonstrates the high validity of ANOVA results to perform sensitivity analysis. Finally, we have conducted a sensitivity analysis of the responses and came to the important results that Nt and Nb is most sensitive to Nusselt number and Sherwood number respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
5.70%
发文量
30
期刊介绍: Propulsion and Power Research is a peer reviewed scientific journal in English established in 2012. The Journals publishes high quality original research articles and general reviews in fundamental research aspects of aeronautics/astronautics propulsion and power engineering, including, but not limited to, system, fluid mechanics, heat transfer, combustion, vibration and acoustics, solid mechanics and dynamics, control and so on. The journal serves as a platform for academic exchange by experts, scholars and researchers in these fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信