{"title":"正子单元和单元上的同余","authors":"JOSEP ELGUETA","doi":"10.1017/s1446788723000204","DOIUrl":null,"url":null,"abstract":"<p>A notion of <span>normal submonoid</span> of a monoid <span>M</span> is introduced that generalizes the normal subgroups of a group. When ordered by inclusion, the set <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {NorSub}(M)$</span></span></img></span></span> of normal submonoids of <span>M</span> is a complete lattice. Joins are explicitly described and the lattice is computed for the finite full transformation monoids <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$T_n$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$n\\geq ~1$</span></span></img></span></span>. It is also shown that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {NorSub}(M)$</span></span></img></span></span> is modular for a specific family of commutative monoids, including all Krull monoids, and that it, as a join semilattice, embeds isomorphically onto a join subsemilattice of the lattice <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {Cong}(M)$</span></span></img></span></span> of congruences on <span>M</span>. This leads to a new strategy for computing <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {Cong}(M)$</span></span></img></span></span> consisting of computing <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathsf {NorSub}(M)$</span></span></img></span></span> and the so-called unital congruences on the quotients of <span>M</span> modulo its normal submonoids. This provides a new perspective on Malcev’s computation of the congruences on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$T_n$</span></span></img></span></span>.</p>","PeriodicalId":50007,"journal":{"name":"Journal of the Australian Mathematical Society","volume":"69 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NORMAL SUBMONOIDS AND CONGRUENCES ON A MONOID\",\"authors\":\"JOSEP ELGUETA\",\"doi\":\"10.1017/s1446788723000204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A notion of <span>normal submonoid</span> of a monoid <span>M</span> is introduced that generalizes the normal subgroups of a group. When ordered by inclusion, the set <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {NorSub}(M)$</span></span></img></span></span> of normal submonoids of <span>M</span> is a complete lattice. Joins are explicitly described and the lattice is computed for the finite full transformation monoids <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$T_n$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n\\\\geq ~1$</span></span></img></span></span>. It is also shown that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {NorSub}(M)$</span></span></img></span></span> is modular for a specific family of commutative monoids, including all Krull monoids, and that it, as a join semilattice, embeds isomorphically onto a join subsemilattice of the lattice <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {Cong}(M)$</span></span></img></span></span> of congruences on <span>M</span>. This leads to a new strategy for computing <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {Cong}(M)$</span></span></img></span></span> consisting of computing <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\mathsf {NorSub}(M)$</span></span></img></span></span> and the so-called unital congruences on the quotients of <span>M</span> modulo its normal submonoids. This provides a new perspective on Malcev’s computation of the congruences on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20231215153200057-0472:S1446788723000204:S1446788723000204_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$T_n$</span></span></img></span></span>.</p>\",\"PeriodicalId\":50007,\"journal\":{\"name\":\"Journal of the Australian Mathematical Society\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s1446788723000204\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s1446788723000204","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文引入了一个单元 M 的正则子单元的概念,它概括了一个群的正则子群。当通过包含排序时,M 的正则子单体集合 $\mathsf {NorSub}(M)$ 是一个完整的网格。明确描述了连接,并计算了有限全变换单体 $T_n$,$n\geq ~1$的网格。研究还表明,$\mathsf {NorSub}(M)$ 对于一个特定的交换单体族(包括所有的 Krull 单体)来说是模块化的,而且它作为一个连接半网格,同构地嵌入到 M 上全等的网格 $\mathsf {Cong}(M)$ 的连接子半格上。这就引出了一种计算 $\mathsf {Cong}(M)$ 的新策略,它包括计算 $\mathsf {NorSub}(M)$ 和 M 的商上的所谓unital congruences modulo its normal submonoids。这为马尔切夫计算 $T_n$ 上的同余提供了一个新视角。
A notion of normal submonoid of a monoid M is introduced that generalizes the normal subgroups of a group. When ordered by inclusion, the set $\mathsf {NorSub}(M)$ of normal submonoids of M is a complete lattice. Joins are explicitly described and the lattice is computed for the finite full transformation monoids $T_n$, $n\geq ~1$. It is also shown that $\mathsf {NorSub}(M)$ is modular for a specific family of commutative monoids, including all Krull monoids, and that it, as a join semilattice, embeds isomorphically onto a join subsemilattice of the lattice $\mathsf {Cong}(M)$ of congruences on M. This leads to a new strategy for computing $\mathsf {Cong}(M)$ consisting of computing $\mathsf {NorSub}(M)$ and the so-called unital congruences on the quotients of M modulo its normal submonoids. This provides a new perspective on Malcev’s computation of the congruences on $T_n$.
期刊介绍:
The Journal of the Australian Mathematical Society is the oldest journal of the Society, and is well established in its coverage of all areas of pure mathematics and mathematical statistics. It seeks to publish original high-quality articles of moderate length that will attract wide interest. Papers are carefully reviewed, and those with good introductions explaining the meaning and value of the results are preferred.
Published Bi-monthly
Published for the Australian Mathematical Society