{"title":"泥浆水对页岩性质的影响及水力压裂的主要影响因素","authors":"Jiawei Liu, Xuefeng Yang, Shengxian Zhao, Yue Yang, Shan Huang, Lieyan Cao, Jiajun Li, Jian Zhang","doi":"10.1155/2023/6645245","DOIUrl":null,"url":null,"abstract":"As shale gas reservoirs have low porosity and low permeability, hydraulic fracturing is a necessary means for industrial exploitation of shale gas. In this study, aiming at the problem of reservoir damage in the process of hydraulic fracturing of shale gas reservoir, a physical simulation method of slickwater fracturing fluid flow in shale core has been established. The change laws of physical parameters of the shale were quantified after slickwater fracturing fluid filtrating into it. The main factors affecting physical parameters of shale matrix around fractures were found out in the process of fracturing, shut-in, and flowback of slickwater fracturing fluid. The results show that after treated by slickwater fracturing fluid, the wettability of shale becomes more uniform in distribution (the water contact angles from 43° to 48°). In the fracturing filtration zone, the damage rate of fracturing fluid to shale porosity is 6.4%-42.0%. Low differential pressure flowback can reduce the damage of the shale, and prolonging the time of shut-in has no obvious effect on the damage to porosity. After 0.3 d (imbibition stability time), the damage of fracturing fluid to shale permeability is basically stable (55.9%). Permeability damage is mainly caused by residue of the fracturing fluid in large pores and bound water in small pores. Analysis of weights of all fracturing parameters shows that flowback differential pressure has the largest influence weight on shale porosity (51.4%), and well shut-in time has the largest influence weight on shale permeability (62.7%). Therefore, in the production process, it is suggested to properly reduce the backflow differential pressure and moderately shorten the well shut-in time.","PeriodicalId":12512,"journal":{"name":"Geofluids","volume":"9 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Effect of Slickwater on Shale Properties and Main Influencing Factors in Hydraulic Fracturing\",\"authors\":\"Jiawei Liu, Xuefeng Yang, Shengxian Zhao, Yue Yang, Shan Huang, Lieyan Cao, Jiajun Li, Jian Zhang\",\"doi\":\"10.1155/2023/6645245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As shale gas reservoirs have low porosity and low permeability, hydraulic fracturing is a necessary means for industrial exploitation of shale gas. In this study, aiming at the problem of reservoir damage in the process of hydraulic fracturing of shale gas reservoir, a physical simulation method of slickwater fracturing fluid flow in shale core has been established. The change laws of physical parameters of the shale were quantified after slickwater fracturing fluid filtrating into it. The main factors affecting physical parameters of shale matrix around fractures were found out in the process of fracturing, shut-in, and flowback of slickwater fracturing fluid. The results show that after treated by slickwater fracturing fluid, the wettability of shale becomes more uniform in distribution (the water contact angles from 43° to 48°). In the fracturing filtration zone, the damage rate of fracturing fluid to shale porosity is 6.4%-42.0%. Low differential pressure flowback can reduce the damage of the shale, and prolonging the time of shut-in has no obvious effect on the damage to porosity. After 0.3 d (imbibition stability time), the damage of fracturing fluid to shale permeability is basically stable (55.9%). Permeability damage is mainly caused by residue of the fracturing fluid in large pores and bound water in small pores. Analysis of weights of all fracturing parameters shows that flowback differential pressure has the largest influence weight on shale porosity (51.4%), and well shut-in time has the largest influence weight on shale permeability (62.7%). Therefore, in the production process, it is suggested to properly reduce the backflow differential pressure and moderately shorten the well shut-in time.\",\"PeriodicalId\":12512,\"journal\":{\"name\":\"Geofluids\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofluids\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/6645245\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofluids","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1155/2023/6645245","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The Effect of Slickwater on Shale Properties and Main Influencing Factors in Hydraulic Fracturing
As shale gas reservoirs have low porosity and low permeability, hydraulic fracturing is a necessary means for industrial exploitation of shale gas. In this study, aiming at the problem of reservoir damage in the process of hydraulic fracturing of shale gas reservoir, a physical simulation method of slickwater fracturing fluid flow in shale core has been established. The change laws of physical parameters of the shale were quantified after slickwater fracturing fluid filtrating into it. The main factors affecting physical parameters of shale matrix around fractures were found out in the process of fracturing, shut-in, and flowback of slickwater fracturing fluid. The results show that after treated by slickwater fracturing fluid, the wettability of shale becomes more uniform in distribution (the water contact angles from 43° to 48°). In the fracturing filtration zone, the damage rate of fracturing fluid to shale porosity is 6.4%-42.0%. Low differential pressure flowback can reduce the damage of the shale, and prolonging the time of shut-in has no obvious effect on the damage to porosity. After 0.3 d (imbibition stability time), the damage of fracturing fluid to shale permeability is basically stable (55.9%). Permeability damage is mainly caused by residue of the fracturing fluid in large pores and bound water in small pores. Analysis of weights of all fracturing parameters shows that flowback differential pressure has the largest influence weight on shale porosity (51.4%), and well shut-in time has the largest influence weight on shale permeability (62.7%). Therefore, in the production process, it is suggested to properly reduce the backflow differential pressure and moderately shorten the well shut-in time.
期刊介绍:
Geofluids is a peer-reviewed, Open Access journal that provides a forum for original research and reviews relating to the role of fluids in mineralogical, chemical, and structural evolution of the Earth’s crust. Its explicit aim is to disseminate ideas across the range of sub-disciplines in which Geofluids research is carried out. To this end, authors are encouraged to stress the transdisciplinary relevance and international ramifications of their research. Authors are also encouraged to make their work as accessible as possible to readers from other sub-disciplines.
Geofluids emphasizes chemical, microbial, and physical aspects of subsurface fluids throughout the Earth’s crust. Geofluids spans studies of groundwater, terrestrial or submarine geothermal fluids, basinal brines, petroleum, metamorphic waters or magmatic fluids.