{"title":"用于传统液压挖掘机远程操作的改装机器人螺旋模型开发","authors":"Tomohiro Komatsu, Keiji Nagatani, Yasuhisa Hirata","doi":"10.1186/s40648-023-00267-7","DOIUrl":null,"url":null,"abstract":"This paper describes the effect of applying spiral model to the development process of robot system for a new entrant company. The robot system was developed to remotely control a conventional hydraulic excavator in order to improve the safety of operators in disaster emergency restoration. The issues of development are the definition of requirements and integration for a practical system in a real environment by a new entrant company. The constraints to the new entry of smaller companies are the following three points. (1) Lack of industry knowledge and data to define requirements (2) Lack of on-site environment and machinery for investigation and testing (3) Lack of experience in robot development To solve the problems under these constraints, the spiral model divides the development based on the prototype into 4-steps, and repeats this series of processes. This method was applied to clarify the necessary functions and performance of the robot step by step, and to construct a system with robustness in a real environment. As a result, this robot system has been successfully utilized in emergency disaster recovery tasks due to landslides, and removing debris in the Fukushima Daiichi Nuclear Power Plant, reducing the mental and physical burden on the operators.","PeriodicalId":37462,"journal":{"name":"ROBOMECH Journal","volume":"79 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spiral model development of retrofitted robot for tele-operation of conventional hydraulic excavator\",\"authors\":\"Tomohiro Komatsu, Keiji Nagatani, Yasuhisa Hirata\",\"doi\":\"10.1186/s40648-023-00267-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the effect of applying spiral model to the development process of robot system for a new entrant company. The robot system was developed to remotely control a conventional hydraulic excavator in order to improve the safety of operators in disaster emergency restoration. The issues of development are the definition of requirements and integration for a practical system in a real environment by a new entrant company. The constraints to the new entry of smaller companies are the following three points. (1) Lack of industry knowledge and data to define requirements (2) Lack of on-site environment and machinery for investigation and testing (3) Lack of experience in robot development To solve the problems under these constraints, the spiral model divides the development based on the prototype into 4-steps, and repeats this series of processes. This method was applied to clarify the necessary functions and performance of the robot step by step, and to construct a system with robustness in a real environment. As a result, this robot system has been successfully utilized in emergency disaster recovery tasks due to landslides, and removing debris in the Fukushima Daiichi Nuclear Power Plant, reducing the mental and physical burden on the operators.\",\"PeriodicalId\":37462,\"journal\":{\"name\":\"ROBOMECH Journal\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ROBOMECH Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40648-023-00267-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ROBOMECH Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40648-023-00267-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Spiral model development of retrofitted robot for tele-operation of conventional hydraulic excavator
This paper describes the effect of applying spiral model to the development process of robot system for a new entrant company. The robot system was developed to remotely control a conventional hydraulic excavator in order to improve the safety of operators in disaster emergency restoration. The issues of development are the definition of requirements and integration for a practical system in a real environment by a new entrant company. The constraints to the new entry of smaller companies are the following three points. (1) Lack of industry knowledge and data to define requirements (2) Lack of on-site environment and machinery for investigation and testing (3) Lack of experience in robot development To solve the problems under these constraints, the spiral model divides the development based on the prototype into 4-steps, and repeats this series of processes. This method was applied to clarify the necessary functions and performance of the robot step by step, and to construct a system with robustness in a real environment. As a result, this robot system has been successfully utilized in emergency disaster recovery tasks due to landslides, and removing debris in the Fukushima Daiichi Nuclear Power Plant, reducing the mental and physical burden on the operators.
期刊介绍:
ROBOMECH Journal focuses on advanced technologies and practical applications in the field of Robotics and Mechatronics. This field is driven by the steadily growing research, development and consumer demand for robots and systems. Advanced robots have been working in medical and hazardous environments, such as space and the deep sea as well as in the manufacturing environment. The scope of the journal includes but is not limited to: 1. Modeling and design 2. System integration 3. Actuators and sensors 4. Intelligent control 5. Artificial intelligence 6. Machine learning 7. Robotics 8. Manufacturing 9. Motion control 10. Vibration and noise control 11. Micro/nano devices and optoelectronics systems 12. Automotive systems 13. Applications for extreme and/or hazardous environments 14. Other applications