局部正相关条件下 LORD++ 和 SAFFRON 的在线错误发现率控制

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Aaron Fisher
{"title":"局部正相关条件下 LORD++ 和 SAFFRON 的在线错误发现率控制","authors":"Aaron Fisher","doi":"10.1002/bimj.202300177","DOIUrl":null,"url":null,"abstract":"<p>Online testing procedures assume that hypotheses are observed in sequence, and allow the significance thresholds for upcoming tests to depend on the test statistics observed so far. Some of the most popular online methods include alpha investing, LORD++, and SAFFRON. These three methods have been shown to provide online control of the “modified” false discovery rate (mFDR) under a condition known as CS. However, to our knowledge, LORD++ and SAFFRON have only been shown to control the traditional false discovery rate (FDR) under an independence condition on the test statistics. Our work bolsters these results by showing that SAFFRON and LORD++ additionally ensure online control of the FDR under a “local” form of nonnegative dependence. Further, FDR control is maintained under certain types of adaptive stopping rules, such as stopping after a certain number of rejections have been observed. Because alpha investing can be recovered as a special case of the SAFFRON framework, our results immediately apply to alpha investing as well. In the process of deriving these results, we also formally characterize how the conditional super-uniformity assumption implicitly limits the allowed <i>p</i>-value dependencies. This implicit limitation is important not only to our proposed FDR result, but also to many existing mFDR results.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online false discovery rate control for LORD++ and SAFFRON under positive, local dependence\",\"authors\":\"Aaron Fisher\",\"doi\":\"10.1002/bimj.202300177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Online testing procedures assume that hypotheses are observed in sequence, and allow the significance thresholds for upcoming tests to depend on the test statistics observed so far. Some of the most popular online methods include alpha investing, LORD++, and SAFFRON. These three methods have been shown to provide online control of the “modified” false discovery rate (mFDR) under a condition known as CS. However, to our knowledge, LORD++ and SAFFRON have only been shown to control the traditional false discovery rate (FDR) under an independence condition on the test statistics. Our work bolsters these results by showing that SAFFRON and LORD++ additionally ensure online control of the FDR under a “local” form of nonnegative dependence. Further, FDR control is maintained under certain types of adaptive stopping rules, such as stopping after a certain number of rejections have been observed. Because alpha investing can be recovered as a special case of the SAFFRON framework, our results immediately apply to alpha investing as well. In the process of deriving these results, we also formally characterize how the conditional super-uniformity assumption implicitly limits the allowed <i>p</i>-value dependencies. This implicit limitation is important not only to our proposed FDR result, but also to many existing mFDR results.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300177\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300177","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在线测试程序假定假设是依次观察到的,并允许即将进行的测试的显著性阈值取决于迄今为止观察到的测试统计量。最流行的在线方法包括阿尔法投资、LORD++ 和 SAFFRON。这三种方法已被证明可以在称为 CS 的条件下对 "修正 "错误发现率(mFDR)进行在线控制。然而,据我们所知,LORD++ 和 SAFFRON 仅能在测试统计量的独立性条件下控制传统的错误发现率 (FDR)。我们的工作证明,SAFFRON 和 LORD++ 还能确保在非负依赖性的 "局部 "形式下对 FDR 进行在线控制,从而巩固了这些成果。此外,在某些类型的自适应停止规则下,例如在观察到一定数量的拒绝后停止,FDR 控制仍能保持。由于阿尔法投资可以作为 SAFFRON 框架的一个特例进行恢复,因此我们的结果也立即适用于阿尔法投资。在推导这些结果的过程中,我们还正式描述了条件超均匀性假设如何隐含地限制了允许的 p 值依赖关系。这种隐含限制不仅对我们提出的 FDR 结果很重要,而且对许多现有的 mFDR 结果也很重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online false discovery rate control for LORD++ and SAFFRON under positive, local dependence

Online testing procedures assume that hypotheses are observed in sequence, and allow the significance thresholds for upcoming tests to depend on the test statistics observed so far. Some of the most popular online methods include alpha investing, LORD++, and SAFFRON. These three methods have been shown to provide online control of the “modified” false discovery rate (mFDR) under a condition known as CS. However, to our knowledge, LORD++ and SAFFRON have only been shown to control the traditional false discovery rate (FDR) under an independence condition on the test statistics. Our work bolsters these results by showing that SAFFRON and LORD++ additionally ensure online control of the FDR under a “local” form of nonnegative dependence. Further, FDR control is maintained under certain types of adaptive stopping rules, such as stopping after a certain number of rejections have been observed. Because alpha investing can be recovered as a special case of the SAFFRON framework, our results immediately apply to alpha investing as well. In the process of deriving these results, we also formally characterize how the conditional super-uniformity assumption implicitly limits the allowed p-value dependencies. This implicit limitation is important not only to our proposed FDR result, but also to many existing mFDR results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信