Buyisile Mkhize, Richard Court, Sandra Castel, Anton Joubert, Marthinus van der Merwe, Lubbe Wiesner
{"title":"开发和验证用于分析母乳中贝达喹啉和 M2 的液相色谱串联质谱分析法","authors":"Buyisile Mkhize, Richard Court, Sandra Castel, Anton Joubert, Marthinus van der Merwe, Lubbe Wiesner","doi":"10.1016/j.jmsacl.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>To develop and validate an assay for the analysis of bedaquiline and its M2 metabolite in human breast milk.</p></div><div><h3>Methods</h3><p>The analytes were extracted using solid phase extraction following protein precipitation. Quantification was performed with liquid chromatography coupled with tandem mass spectrometry. Chromatographic separation was achieved using gradient chromatography on a Poroshell 120 SB-C18 analytical column at 40 °C, with a flow rate of 350 µL/minute and a total run time of eight minutes. An AB Sciex 3000 mass spectrometer with electrospray ionization in the positive mode was used for detection, employing multiple reaction monitoring scan mode. Bedaquiline-d6 and M2-d3-<sup>13</sup>C were used as internal standards.</p></div><div><h3>Results</h3><p>Calibrations curves for bedaquiline and M2 exhibited quadratic (weighted 1/x concentration) regressions over the respective concentration ranges of 0.0780 to 5.00 µg/mL and 0.0312 to 2.00 µg/mL. Inter- and intra-day validation accuracies ranged between 96.7 % and 103.5 % for bedaquiline, and 104.2 % to 106.5 % for M2, with a coefficient of variation below 9.2 % for both compounds.</p></div><div><h3>Conclusion</h3><p>The developed assay demonstrated selectivity and robustness, enabling differentiation between bedaquiline and M2 within the context of endogenous compounds from six separate lots of breast milk samples. Successful application was observed in the analysis of breast milk samples sourced from patients treated for multidrug-resistant tuberculosis within a clinical study setting.</p></div>","PeriodicalId":52406,"journal":{"name":"Journal of Mass Spectrometry and Advances in the Clinical Lab","volume":"31 ","pages":"Pages 8-16"},"PeriodicalIF":3.1000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667145X23000391/pdfft?md5=10be0ce9af33a42047481730cdb66b49&pid=1-s2.0-S2667145X23000391-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development and validation of a liquid chromatography tandem mass spectrometry assay for the analysis of bedaquiline and M2 in breast milk\",\"authors\":\"Buyisile Mkhize, Richard Court, Sandra Castel, Anton Joubert, Marthinus van der Merwe, Lubbe Wiesner\",\"doi\":\"10.1016/j.jmsacl.2023.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>To develop and validate an assay for the analysis of bedaquiline and its M2 metabolite in human breast milk.</p></div><div><h3>Methods</h3><p>The analytes were extracted using solid phase extraction following protein precipitation. Quantification was performed with liquid chromatography coupled with tandem mass spectrometry. Chromatographic separation was achieved using gradient chromatography on a Poroshell 120 SB-C18 analytical column at 40 °C, with a flow rate of 350 µL/minute and a total run time of eight minutes. An AB Sciex 3000 mass spectrometer with electrospray ionization in the positive mode was used for detection, employing multiple reaction monitoring scan mode. Bedaquiline-d6 and M2-d3-<sup>13</sup>C were used as internal standards.</p></div><div><h3>Results</h3><p>Calibrations curves for bedaquiline and M2 exhibited quadratic (weighted 1/x concentration) regressions over the respective concentration ranges of 0.0780 to 5.00 µg/mL and 0.0312 to 2.00 µg/mL. Inter- and intra-day validation accuracies ranged between 96.7 % and 103.5 % for bedaquiline, and 104.2 % to 106.5 % for M2, with a coefficient of variation below 9.2 % for both compounds.</p></div><div><h3>Conclusion</h3><p>The developed assay demonstrated selectivity and robustness, enabling differentiation between bedaquiline and M2 within the context of endogenous compounds from six separate lots of breast milk samples. Successful application was observed in the analysis of breast milk samples sourced from patients treated for multidrug-resistant tuberculosis within a clinical study setting.</p></div>\",\"PeriodicalId\":52406,\"journal\":{\"name\":\"Journal of Mass Spectrometry and Advances in the Clinical Lab\",\"volume\":\"31 \",\"pages\":\"Pages 8-16\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667145X23000391/pdfft?md5=10be0ce9af33a42047481730cdb66b49&pid=1-s2.0-S2667145X23000391-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mass Spectrometry and Advances in the Clinical Lab\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667145X23000391\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mass Spectrometry and Advances in the Clinical Lab","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667145X23000391","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Development and validation of a liquid chromatography tandem mass spectrometry assay for the analysis of bedaquiline and M2 in breast milk
Objective
To develop and validate an assay for the analysis of bedaquiline and its M2 metabolite in human breast milk.
Methods
The analytes were extracted using solid phase extraction following protein precipitation. Quantification was performed with liquid chromatography coupled with tandem mass spectrometry. Chromatographic separation was achieved using gradient chromatography on a Poroshell 120 SB-C18 analytical column at 40 °C, with a flow rate of 350 µL/minute and a total run time of eight minutes. An AB Sciex 3000 mass spectrometer with electrospray ionization in the positive mode was used for detection, employing multiple reaction monitoring scan mode. Bedaquiline-d6 and M2-d3-13C were used as internal standards.
Results
Calibrations curves for bedaquiline and M2 exhibited quadratic (weighted 1/x concentration) regressions over the respective concentration ranges of 0.0780 to 5.00 µg/mL and 0.0312 to 2.00 µg/mL. Inter- and intra-day validation accuracies ranged between 96.7 % and 103.5 % for bedaquiline, and 104.2 % to 106.5 % for M2, with a coefficient of variation below 9.2 % for both compounds.
Conclusion
The developed assay demonstrated selectivity and robustness, enabling differentiation between bedaquiline and M2 within the context of endogenous compounds from six separate lots of breast milk samples. Successful application was observed in the analysis of breast milk samples sourced from patients treated for multidrug-resistant tuberculosis within a clinical study setting.