寰椎骨间的小结节是两栖动物的祖先

IF 2.6 3区 生物学 Q2 DEVELOPMENTAL BIOLOGY
Dana E. Korneisel, Sara Hassan, Hillary C. Maddin
{"title":"寰椎骨间的小结节是两栖动物的祖先","authors":"Dana E. Korneisel,&nbsp;Sara Hassan,&nbsp;Hillary C. Maddin","doi":"10.1111/ede.12466","DOIUrl":null,"url":null,"abstract":"<p>Lissamphibians, represented today by frogs, salamanders, and caecilians, diverged deep in the tetrapod tree of life. Extensive morphological adaptations to disparate lifestyles have made linking extant lissamphibians to one another and to their extinct relatives difficult and controversial. However, the discovery of a feature on the atlas of the frog <i>Xenopus laevis</i>, may add to the small set of osteological traits that unite lissamphibians. In this study, we combine our observations of atlas development in <i>X. laevis</i> with a deep examination of atlantal interglenoid tubercle (TI) occurrence in fossil taxa. The TI is shown herein to occur transiently on the ossifying atlas of roughly one-third of <i>X. laevis</i> tadpoles but is absent in adults of this species. In ancestral character state estimations (ACSE), within the evolutionary context of lissamphibians as dissorophoid temnospondyls, this feature is found to be ancestrally shared among lissamphibians, its presence is uncertain in stem batrachians, and then the TI is lost in extant caecilians and frogs. However, our data suggests apparent TI loss around the origin of frogs may be explained by its ontogenetically transient nature. The only nonamphibian tetrapods with a TI are “microsaurs,” and this similarity is interpreted as one of many convergences that resulted from convergent evolutionary processes that occurred in the evolution of “microsaurs” and lissamphibians. The TI is thus interpreted to be ancestral to lissamphibians as it is found to be present in some form throughout each extant lissamphibian clade's history.</p>","PeriodicalId":12083,"journal":{"name":"Evolution & Development","volume":"26 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12466","citationCount":"0","resultStr":"{\"title\":\"The interglenoid tubercle of the atlas is ancestral to lissamphibians\",\"authors\":\"Dana E. Korneisel,&nbsp;Sara Hassan,&nbsp;Hillary C. Maddin\",\"doi\":\"10.1111/ede.12466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lissamphibians, represented today by frogs, salamanders, and caecilians, diverged deep in the tetrapod tree of life. Extensive morphological adaptations to disparate lifestyles have made linking extant lissamphibians to one another and to their extinct relatives difficult and controversial. However, the discovery of a feature on the atlas of the frog <i>Xenopus laevis</i>, may add to the small set of osteological traits that unite lissamphibians. In this study, we combine our observations of atlas development in <i>X. laevis</i> with a deep examination of atlantal interglenoid tubercle (TI) occurrence in fossil taxa. The TI is shown herein to occur transiently on the ossifying atlas of roughly one-third of <i>X. laevis</i> tadpoles but is absent in adults of this species. In ancestral character state estimations (ACSE), within the evolutionary context of lissamphibians as dissorophoid temnospondyls, this feature is found to be ancestrally shared among lissamphibians, its presence is uncertain in stem batrachians, and then the TI is lost in extant caecilians and frogs. However, our data suggests apparent TI loss around the origin of frogs may be explained by its ontogenetically transient nature. The only nonamphibian tetrapods with a TI are “microsaurs,” and this similarity is interpreted as one of many convergences that resulted from convergent evolutionary processes that occurred in the evolution of “microsaurs” and lissamphibians. The TI is thus interpreted to be ancestral to lissamphibians as it is found to be present in some form throughout each extant lissamphibian clade's history.</p>\",\"PeriodicalId\":12083,\"journal\":{\"name\":\"Evolution & Development\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ede.12466\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution & Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ede.12466\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution & Development","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ede.12466","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

现今以青蛙、蝾螈和盲鳗为代表的两栖类动物在四足动物生命树的深处分化。对不同生活方式的广泛形态适应,使得将现存的两栖类动物彼此联系起来以及将它们与已灭绝的近亲联系起来变得困难和有争议。然而,蛙类爪蟾图谱上的一个特征的发现,可能会增加将两栖类联系在一起的一小部分骨学特征。在本研究中,我们结合了对X.laevis蛙寰椎发育的观察,以及对化石类群寰椎骨间小瘤(TI)出现情况的深入研究。本文显示,大约三分之一的X. laevis蝌蚪的骨化寰椎上短暂出现了TI,但该物种的成体中却没有TI。在作为离体蛙类的祖先特征状态估计(ACSE)中,发现这一特征在离体两栖类中是祖先共有的,在茎蝙蝠类中其存在是不确定的,然后在现存的凯门鳄和蛙类中TI消失了。然而,我们的数据表明,蛙类起源前后明显的 TI 消失可能是由于其在本体上的瞬时性。唯一具有TI的非两栖类四足动物是 "微型龙",这种相似性被解释为 "微型龙 "和两栖类进化过程中发生的趋同进化过程所产生的许多趋同现象之一。因此,TI 被认为是片脚类动物的祖先,因为在现存片脚类动物的每个支系的历史中,都发现有某种形式的 TI 存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The interglenoid tubercle of the atlas is ancestral to lissamphibians

The interglenoid tubercle of the atlas is ancestral to lissamphibians

The interglenoid tubercle of the atlas is ancestral to lissamphibians

Lissamphibians, represented today by frogs, salamanders, and caecilians, diverged deep in the tetrapod tree of life. Extensive morphological adaptations to disparate lifestyles have made linking extant lissamphibians to one another and to their extinct relatives difficult and controversial. However, the discovery of a feature on the atlas of the frog Xenopus laevis, may add to the small set of osteological traits that unite lissamphibians. In this study, we combine our observations of atlas development in X. laevis with a deep examination of atlantal interglenoid tubercle (TI) occurrence in fossil taxa. The TI is shown herein to occur transiently on the ossifying atlas of roughly one-third of X. laevis tadpoles but is absent in adults of this species. In ancestral character state estimations (ACSE), within the evolutionary context of lissamphibians as dissorophoid temnospondyls, this feature is found to be ancestrally shared among lissamphibians, its presence is uncertain in stem batrachians, and then the TI is lost in extant caecilians and frogs. However, our data suggests apparent TI loss around the origin of frogs may be explained by its ontogenetically transient nature. The only nonamphibian tetrapods with a TI are “microsaurs,” and this similarity is interpreted as one of many convergences that resulted from convergent evolutionary processes that occurred in the evolution of “microsaurs” and lissamphibians. The TI is thus interpreted to be ancestral to lissamphibians as it is found to be present in some form throughout each extant lissamphibian clade's history.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution & Development
Evolution & Development 生物-发育生物学
CiteScore
6.30
自引率
3.40%
发文量
26
审稿时长
>12 weeks
期刊介绍: Evolution & Development serves as a voice for the rapidly growing research community at the interface of evolutionary and developmental biology. The exciting re-integration of these two fields, after almost a century''s separation, holds much promise as the focus of a broader synthesis of biological thought. Evolution & Development publishes works that address the evolution/development interface from a diversity of angles. The journal welcomes papers from paleontologists, population biologists, developmental biologists, and molecular biologists, but also encourages submissions from professionals in other fields where relevant research is being carried out, from mathematics to the history and philosophy of science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信