用压力表示的微极性流体方程的弱$L^{p}$$Prodi-Serrin 型正则准则

IF 1.1 4区 数学 Q1 MATHEMATICS
Ines Ben Omrane, Mourad Ben Slimane, Sadek Gala, Maria Alessandra Ragusa
{"title":"用压力表示的微极性流体方程的弱$L^{p}$$Prodi-Serrin 型正则准则","authors":"Ines Ben Omrane, Mourad Ben Slimane, Sadek Gala, Maria Alessandra Ragusa","doi":"10.1007/s11587-023-00829-2","DOIUrl":null,"url":null,"abstract":"<p>This paper is devoted to investigating regularity criteria for the 3D micropolar fluid equations in terms of pressure in weak Lebesgue space. More precisely, we mainly proved that the weak solution is regular on (0, <i>T</i>] provided that either the norm <span>\\(\\left\\| \\pi \\right\\| _{L^{\\alpha ,\\infty }(0,T;L^{\\beta ,\\infty }(\\mathbb {R}^{3}))}\\)</span> with <span>\\(\\frac{2}{\\alpha }+ \\frac{3}{\\beta }=2\\)</span> and <span>\\(\\frac{3}{2}&lt;\\beta &lt;\\infty \\)</span> or <span>\\(\\left\\| \\nabla \\pi \\right\\| _{L^{\\alpha ,\\infty }(0,T;L^{\\beta ,\\infty }(\\mathbb {R} ^{3}))}\\)</span> with <span>\\(\\frac{2}{\\alpha }+\\frac{3}{\\beta }=3\\)</span> and <span>\\(1&lt;\\beta &lt;\\infty \\)</span> is sufficiently small.\n</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"5 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A weak- $$L^{p}$$ Prodi–Serrin type regularity criterion for the micropolar fluid equations in terms of the pressure\",\"authors\":\"Ines Ben Omrane, Mourad Ben Slimane, Sadek Gala, Maria Alessandra Ragusa\",\"doi\":\"10.1007/s11587-023-00829-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is devoted to investigating regularity criteria for the 3D micropolar fluid equations in terms of pressure in weak Lebesgue space. More precisely, we mainly proved that the weak solution is regular on (0, <i>T</i>] provided that either the norm <span>\\\\(\\\\left\\\\| \\\\pi \\\\right\\\\| _{L^{\\\\alpha ,\\\\infty }(0,T;L^{\\\\beta ,\\\\infty }(\\\\mathbb {R}^{3}))}\\\\)</span> with <span>\\\\(\\\\frac{2}{\\\\alpha }+ \\\\frac{3}{\\\\beta }=2\\\\)</span> and <span>\\\\(\\\\frac{3}{2}&lt;\\\\beta &lt;\\\\infty \\\\)</span> or <span>\\\\(\\\\left\\\\| \\\\nabla \\\\pi \\\\right\\\\| _{L^{\\\\alpha ,\\\\infty }(0,T;L^{\\\\beta ,\\\\infty }(\\\\mathbb {R} ^{3}))}\\\\)</span> with <span>\\\\(\\\\frac{2}{\\\\alpha }+\\\\frac{3}{\\\\beta }=3\\\\)</span> and <span>\\\\(1&lt;\\\\beta &lt;\\\\infty \\\\)</span> is sufficiently small.\\n</p>\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-023-00829-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-023-00829-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于研究三维微波流体方程在弱 Lebesgue 空间中的正则性准则。更确切地说,我们主要证明了弱解在 (0, T] 上是正则的,条件是规范 \(\left\| \pi \right\| _{L^{\alpha ,\infty }(0,T.);L^{beta ,\infty }(\mathbb {R}^{3}))}\) with \(\frac{2}{alpha }+ \frac{3}{beta }=2\) and\(\frac{3}{2}<;\beta <\infty \) or\(\left\| \nabla \pi \right\| _{L^{\alpha ,\infty }(0,T.)) 和L^{beta ,\infty }(\mathbb {R} ^{3}))}\) with \(\frac{2}{alpha }+\frac{3}{beta }=3\) and\(1<\beta <\infty\) is sufficiently small.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A weak- $$L^{p}$$ Prodi–Serrin type regularity criterion for the micropolar fluid equations in terms of the pressure

This paper is devoted to investigating regularity criteria for the 3D micropolar fluid equations in terms of pressure in weak Lebesgue space. More precisely, we mainly proved that the weak solution is regular on (0, T] provided that either the norm \(\left\| \pi \right\| _{L^{\alpha ,\infty }(0,T;L^{\beta ,\infty }(\mathbb {R}^{3}))}\) with \(\frac{2}{\alpha }+ \frac{3}{\beta }=2\) and \(\frac{3}{2}<\beta <\infty \) or \(\left\| \nabla \pi \right\| _{L^{\alpha ,\infty }(0,T;L^{\beta ,\infty }(\mathbb {R} ^{3}))}\) with \(\frac{2}{\alpha }+\frac{3}{\beta }=3\) and \(1<\beta <\infty \) is sufficiently small.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信