{"title":"在深度学习框架中利用边缘增强注意力机制进行超新星检测","authors":"K. Yin , J. Jia , F. Li , X. Gao , T. Sun","doi":"10.1016/j.ascom.2023.100784","DOIUrl":null,"url":null,"abstract":"<div><p>Recent studies have shown the advantages of convolutional neural networks in the classification and detection of supernovae. In our prior work, we employed one-stage object detection frameworks to address the challenges of presupposed location and varying image sizes in supernova detection. Notably, the backbone of the object detectors naturally emphasized the edges of candidate regions in the visualized heatmap, reflecting the strategies adopted by human observers. Capitalizing on this similarity, we introduce an innovative edge attention module, tailored to prioritize the edges of candidate regions, and improved the performance of supernova detectors. In parallel, we have developed a three-channel supernova detection dataset by integrating science (current), template (reference), and difference images into a three-channel configuration. The candidates in the new dataset are more conspicuous. To assess the efficacy of our edge attention module, we conducted a series of experiments on the proposed dataset. The experimental results establish the superiority of the proposed method in detecting supernovae. Additionally, visualizations of the feature maps shows the proposed edge attention is able to reallocate weights around the candidate edges, corroborating its effectiveness.</p></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"46 ","pages":"Article 100784"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213133723000999/pdfft?md5=ac31d2323a16f279ff700e51a1002074&pid=1-s2.0-S2213133723000999-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Harnessing edge-enhanced attention mechanisms for supernova detection in deep learning frameworks\",\"authors\":\"K. Yin , J. Jia , F. Li , X. Gao , T. Sun\",\"doi\":\"10.1016/j.ascom.2023.100784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent studies have shown the advantages of convolutional neural networks in the classification and detection of supernovae. In our prior work, we employed one-stage object detection frameworks to address the challenges of presupposed location and varying image sizes in supernova detection. Notably, the backbone of the object detectors naturally emphasized the edges of candidate regions in the visualized heatmap, reflecting the strategies adopted by human observers. Capitalizing on this similarity, we introduce an innovative edge attention module, tailored to prioritize the edges of candidate regions, and improved the performance of supernova detectors. In parallel, we have developed a three-channel supernova detection dataset by integrating science (current), template (reference), and difference images into a three-channel configuration. The candidates in the new dataset are more conspicuous. To assess the efficacy of our edge attention module, we conducted a series of experiments on the proposed dataset. The experimental results establish the superiority of the proposed method in detecting supernovae. Additionally, visualizations of the feature maps shows the proposed edge attention is able to reallocate weights around the candidate edges, corroborating its effectiveness.</p></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":\"46 \",\"pages\":\"Article 100784\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213133723000999/pdfft?md5=ac31d2323a16f279ff700e51a1002074&pid=1-s2.0-S2213133723000999-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133723000999\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133723000999","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Harnessing edge-enhanced attention mechanisms for supernova detection in deep learning frameworks
Recent studies have shown the advantages of convolutional neural networks in the classification and detection of supernovae. In our prior work, we employed one-stage object detection frameworks to address the challenges of presupposed location and varying image sizes in supernova detection. Notably, the backbone of the object detectors naturally emphasized the edges of candidate regions in the visualized heatmap, reflecting the strategies adopted by human observers. Capitalizing on this similarity, we introduce an innovative edge attention module, tailored to prioritize the edges of candidate regions, and improved the performance of supernova detectors. In parallel, we have developed a three-channel supernova detection dataset by integrating science (current), template (reference), and difference images into a three-channel configuration. The candidates in the new dataset are more conspicuous. To assess the efficacy of our edge attention module, we conducted a series of experiments on the proposed dataset. The experimental results establish the superiority of the proposed method in detecting supernovae. Additionally, visualizations of the feature maps shows the proposed edge attention is able to reallocate weights around the candidate edges, corroborating its effectiveness.
Astronomy and ComputingASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍:
Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.