{"title":"使用异芯光纤进行无袖带血压估算","authors":"Yuya Koyama, Hiroki Kamada, Kazuhiro Watanabe, Michiko Nishiyama","doi":"10.1002/ecj.12438","DOIUrl":null,"url":null,"abstract":"<p>In this study, we proposed a cuff-less blood pressure measurement using a medical tape sensor with an embedded hetero-core optical fiber. The tape sensor pasted on the skin can directly detect pulse wave signals with a simple measuring device. Pulse transit time (PTT) was obtained from the time difference between the two pulse waveforms at the neck and foot. Systolic blood pressure (SBP) was estimated from PTT and the regression equation. The result shows that the maximum prediction error was 3.8 mmHg in five healthy young subjects. The SBP data were evaluated using a Bland-Altman method to assess the agreement of SBP data estimated by the proposed method with those measured by the cuff-based electronic sphygmomanometer. The mean ± 1.96 standard deviation of the estimated SBP against the reference was −1.3 ± 5.1 mmHg. The results show that the proposed noninvasive blood pressure measurement method can measure blood pressure, and its accuracy is comparable to that of the cuff-based electronic sphygmomanometer.</p>","PeriodicalId":50539,"journal":{"name":"Electronics and Communications in Japan","volume":"107 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cuff-less blood pressure estimation using hetero-core optical fibers\",\"authors\":\"Yuya Koyama, Hiroki Kamada, Kazuhiro Watanabe, Michiko Nishiyama\",\"doi\":\"10.1002/ecj.12438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we proposed a cuff-less blood pressure measurement using a medical tape sensor with an embedded hetero-core optical fiber. The tape sensor pasted on the skin can directly detect pulse wave signals with a simple measuring device. Pulse transit time (PTT) was obtained from the time difference between the two pulse waveforms at the neck and foot. Systolic blood pressure (SBP) was estimated from PTT and the regression equation. The result shows that the maximum prediction error was 3.8 mmHg in five healthy young subjects. The SBP data were evaluated using a Bland-Altman method to assess the agreement of SBP data estimated by the proposed method with those measured by the cuff-based electronic sphygmomanometer. The mean ± 1.96 standard deviation of the estimated SBP against the reference was −1.3 ± 5.1 mmHg. The results show that the proposed noninvasive blood pressure measurement method can measure blood pressure, and its accuracy is comparable to that of the cuff-based electronic sphygmomanometer.</p>\",\"PeriodicalId\":50539,\"journal\":{\"name\":\"Electronics and Communications in Japan\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics and Communications in Japan\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12438\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics and Communications in Japan","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecj.12438","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Cuff-less blood pressure estimation using hetero-core optical fibers
In this study, we proposed a cuff-less blood pressure measurement using a medical tape sensor with an embedded hetero-core optical fiber. The tape sensor pasted on the skin can directly detect pulse wave signals with a simple measuring device. Pulse transit time (PTT) was obtained from the time difference between the two pulse waveforms at the neck and foot. Systolic blood pressure (SBP) was estimated from PTT and the regression equation. The result shows that the maximum prediction error was 3.8 mmHg in five healthy young subjects. The SBP data were evaluated using a Bland-Altman method to assess the agreement of SBP data estimated by the proposed method with those measured by the cuff-based electronic sphygmomanometer. The mean ± 1.96 standard deviation of the estimated SBP against the reference was −1.3 ± 5.1 mmHg. The results show that the proposed noninvasive blood pressure measurement method can measure blood pressure, and its accuracy is comparable to that of the cuff-based electronic sphygmomanometer.
期刊介绍:
Electronics and Communications in Japan (ECJ) publishes papers translated from the Transactions of the Institute of Electrical Engineers of Japan 12 times per year as an official journal of the Institute of Electrical Engineers of Japan (IEEJ). ECJ aims to provide world-class researches in highly diverse and sophisticated areas of Electrical and Electronic Engineering as well as in related disciplines with emphasis on electronic circuits, controls and communications. ECJ focuses on the following fields:
- Electronic theory and circuits,
- Control theory,
- Communications,
- Cryptography,
- Biomedical fields,
- Surveillance,
- Robotics,
- Sensors and actuators,
- Micromachines,
- Image analysis and signal analysis,
- New materials.
For works related to the science, technology, and applications of electric power, please refer to the sister journal Electrical Engineering in Japan (EEJ).