通过分子调谐环境将二氧化碳电解槽的琼脂负荷降至最低

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kevinjeorjios Pellumbi, Dominik Krisch, Clara Rettenmaier, Houssein Awada, He Sun, Luyang Song, Sebastian A. Sanden, Lucas Hoof, Leonard Messing, Kai junge Puring, Daniel Siegmund, Beatriz Roldan Cuenya, Wolfgang Schöfberger, Ulf-Peter Apfel
{"title":"通过分子调谐环境将二氧化碳电解槽的琼脂负荷降至最低","authors":"Kevinjeorjios Pellumbi, Dominik Krisch, Clara Rettenmaier, Houssein Awada, He Sun, Luyang Song, Sebastian A. Sanden, Lucas Hoof, Leonard Messing, Kai junge Puring, Daniel Siegmund, Beatriz Roldan Cuenya, Wolfgang Schöfberger, Ulf-Peter Apfel","doi":"10.1016/j.xcrp.2023.101746","DOIUrl":null,"url":null,"abstract":"<p>Electrochemically converting CO<sub>2</sub> to renewable synthons is steadily becoming a globally scalable and important CO<sub>2</sub> utilization technology. Nevertheless, most industrial endeavors employ catalysts based on metallic Ag or Au, with few catalytically competitive alternatives, showing similar activity, high mass activity, and cost efficiency. Similarly, this effort is hindered by insufficient testing of promising materials in application-oriented conditions. We herein present a holistic pathway starting from the conceptualization of different Ag(I)-based molecular catalysts to their complete integration into directly industrially applicable cell assemblies. Notably, optimization of not only the catalyst but also the operational conditions allowed us to achieve CO<sub>2</sub> electrolysis for at least 110 h at 300 mA cm<sup>−2</sup> and 80 h at 600 mA cm<sup>−2</sup> with an FE<sub>CO</sub> decay rate of 0.01% h<sup>−1</sup>. Beyond significant mass activity improvements for CO production, we provide the community with a broad toolbox toward improving catalytic and cell performance directly between different cell sizes.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"29 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pushing the Ag-loading of CO2 electrolyzers to the minimum via molecularly tuned environments\",\"authors\":\"Kevinjeorjios Pellumbi, Dominik Krisch, Clara Rettenmaier, Houssein Awada, He Sun, Luyang Song, Sebastian A. Sanden, Lucas Hoof, Leonard Messing, Kai junge Puring, Daniel Siegmund, Beatriz Roldan Cuenya, Wolfgang Schöfberger, Ulf-Peter Apfel\",\"doi\":\"10.1016/j.xcrp.2023.101746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemically converting CO<sub>2</sub> to renewable synthons is steadily becoming a globally scalable and important CO<sub>2</sub> utilization technology. Nevertheless, most industrial endeavors employ catalysts based on metallic Ag or Au, with few catalytically competitive alternatives, showing similar activity, high mass activity, and cost efficiency. Similarly, this effort is hindered by insufficient testing of promising materials in application-oriented conditions. We herein present a holistic pathway starting from the conceptualization of different Ag(I)-based molecular catalysts to their complete integration into directly industrially applicable cell assemblies. Notably, optimization of not only the catalyst but also the operational conditions allowed us to achieve CO<sub>2</sub> electrolysis for at least 110 h at 300 mA cm<sup>−2</sup> and 80 h at 600 mA cm<sup>−2</sup> with an FE<sub>CO</sub> decay rate of 0.01% h<sup>−1</sup>. Beyond significant mass activity improvements for CO production, we provide the community with a broad toolbox toward improving catalytic and cell performance directly between different cell sizes.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2023-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2023.101746\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2023.101746","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过电化学方法将二氧化碳转化为可再生合成物正逐步成为一项可在全球推广的重要二氧化碳利用技术。然而,大多数工业研究都采用基于金属银或金的催化剂,很少有具有催化竞争力的替代品能显示出类似的活性、高的质量活性和成本效益。同样,在以应用为导向的条件下对有前途的材料进行的测试不足也阻碍了这方面的努力。在此,我们提出了一个整体路径,从不同的银(I)基分子催化剂的概念化开始,到将其完全集成到直接适用于工业的电池组件中。值得注意的是,我们不仅优化了催化剂,还优化了操作条件,从而实现了在 300 mA cm-2 条件下至少电解 110 小时二氧化碳,在 600 mA cm-2 条件下至少电解 80 小时二氧化碳,FECO 衰减率为 0.01% h-1。除了显著提高 CO 生产的质量活性外,我们还为社区提供了一个广泛的工具箱,可直接改善不同尺寸电池之间的催化和电池性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Pushing the Ag-loading of CO2 electrolyzers to the minimum via molecularly tuned environments

Pushing the Ag-loading of CO2 electrolyzers to the minimum via molecularly tuned environments

Electrochemically converting CO2 to renewable synthons is steadily becoming a globally scalable and important CO2 utilization technology. Nevertheless, most industrial endeavors employ catalysts based on metallic Ag or Au, with few catalytically competitive alternatives, showing similar activity, high mass activity, and cost efficiency. Similarly, this effort is hindered by insufficient testing of promising materials in application-oriented conditions. We herein present a holistic pathway starting from the conceptualization of different Ag(I)-based molecular catalysts to their complete integration into directly industrially applicable cell assemblies. Notably, optimization of not only the catalyst but also the operational conditions allowed us to achieve CO2 electrolysis for at least 110 h at 300 mA cm−2 and 80 h at 600 mA cm−2 with an FECO decay rate of 0.01% h−1. Beyond significant mass activity improvements for CO production, we provide the community with a broad toolbox toward improving catalytic and cell performance directly between different cell sizes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信