{"title":"从柯西数据中联合确定点源和障碍物","authors":"Deyue Zhang, Yan Chang, Yukun Guo","doi":"10.1088/1361-6420/ad10c8","DOIUrl":null,"url":null,"abstract":"A numerical method is developed for recovering both the source locations and the obstacle from the scattered Cauchy data of the time-harmonic acoustic field. First of all, the incident and scattered components are decomposed from the coupled Cauchy data by the representation of the single-layer potentials and the solution to the resulting linear integral system. As a consequence of this decomposition, the original problem of joint inversion is reformulated into two decoupled subproblems: an inverse source problem and an inverse obstacle scattering problem. Then, two sampling-type schemes are proposed to recover the shape of the obstacle and the source locations, respectively. The sampling methods rely on the specific indicator functions defined on target-oriented probing domains of circular shape. The error estimates of the decoupling procedure are established and the asymptotic behaviors of the indicator functions are analyzed. Extensive numerical experiments are also conducted to verify the performance of the sampling schemes.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"6 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jointly determining the point sources and obstacle from Cauchy data\",\"authors\":\"Deyue Zhang, Yan Chang, Yukun Guo\",\"doi\":\"10.1088/1361-6420/ad10c8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical method is developed for recovering both the source locations and the obstacle from the scattered Cauchy data of the time-harmonic acoustic field. First of all, the incident and scattered components are decomposed from the coupled Cauchy data by the representation of the single-layer potentials and the solution to the resulting linear integral system. As a consequence of this decomposition, the original problem of joint inversion is reformulated into two decoupled subproblems: an inverse source problem and an inverse obstacle scattering problem. Then, two sampling-type schemes are proposed to recover the shape of the obstacle and the source locations, respectively. The sampling methods rely on the specific indicator functions defined on target-oriented probing domains of circular shape. The error estimates of the decoupling procedure are established and the asymptotic behaviors of the indicator functions are analyzed. Extensive numerical experiments are also conducted to verify the performance of the sampling schemes.\",\"PeriodicalId\":50275,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad10c8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad10c8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Jointly determining the point sources and obstacle from Cauchy data
A numerical method is developed for recovering both the source locations and the obstacle from the scattered Cauchy data of the time-harmonic acoustic field. First of all, the incident and scattered components are decomposed from the coupled Cauchy data by the representation of the single-layer potentials and the solution to the resulting linear integral system. As a consequence of this decomposition, the original problem of joint inversion is reformulated into two decoupled subproblems: an inverse source problem and an inverse obstacle scattering problem. Then, two sampling-type schemes are proposed to recover the shape of the obstacle and the source locations, respectively. The sampling methods rely on the specific indicator functions defined on target-oriented probing domains of circular shape. The error estimates of the decoupling procedure are established and the asymptotic behaviors of the indicator functions are analyzed. Extensive numerical experiments are also conducted to verify the performance of the sampling schemes.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.