用并行实时算法解决后向扩散问题的双参数正则化方法

IF 2 2区 数学 Q1 MATHEMATICS, APPLIED
Jun-Liang Fu, Jijun Liu
{"title":"用并行实时算法解决后向扩散问题的双参数正则化方法","authors":"Jun-Liang Fu, Jijun Liu","doi":"10.1088/1361-6420/ad1131","DOIUrl":null,"url":null,"abstract":"We propose a double-parameter regularization scheme for dealing with the backward diffusion process. Considering the smoothing effect of Yosida approximation for PDE, we propose to regularize this ill-posed problem by modifying original governed system in terms of a pseudoparabolic equation together with a quasi-boundary condition simultaneously, which consequently contains two regularizing parameters. Theoretically, we establish the optimal error estimates between the regularizing solution and the exact one in terms of suitable choice strategy for the regularizing parameters, under <italic toggle=\"yes\">a-priori</italic> regularity assumptions on the exact solution. The <italic toggle=\"yes\">a-posteriori</italic> choice strategy for the regularizing parameters based on the discrepancy principle is also studied. To weaken the heavy computational cost for solving the discrete nonsymmetric linear regularizing system by finite difference scheme, especially in higher spatial dimensional cases, the block divide-and-conquer method together with the properties of the Schur complement is applied to decompose the linear system into two half-size linear systems, one of which can be solved by the diagonalization technique, and consequently an efficient parallel-in-time algorithm originally developed for direct problem is applicable. Our proposed method is of much lower complexity than the standard solver for the corresponding linear system. Finally, some numerical examples are presented to verify the efficiency of our proposed method.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"42 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double-parameter regularization for solving the backward diffusion problem with parallel-in-time algorithm\",\"authors\":\"Jun-Liang Fu, Jijun Liu\",\"doi\":\"10.1088/1361-6420/ad1131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a double-parameter regularization scheme for dealing with the backward diffusion process. Considering the smoothing effect of Yosida approximation for PDE, we propose to regularize this ill-posed problem by modifying original governed system in terms of a pseudoparabolic equation together with a quasi-boundary condition simultaneously, which consequently contains two regularizing parameters. Theoretically, we establish the optimal error estimates between the regularizing solution and the exact one in terms of suitable choice strategy for the regularizing parameters, under <italic toggle=\\\"yes\\\">a-priori</italic> regularity assumptions on the exact solution. The <italic toggle=\\\"yes\\\">a-posteriori</italic> choice strategy for the regularizing parameters based on the discrepancy principle is also studied. To weaken the heavy computational cost for solving the discrete nonsymmetric linear regularizing system by finite difference scheme, especially in higher spatial dimensional cases, the block divide-and-conquer method together with the properties of the Schur complement is applied to decompose the linear system into two half-size linear systems, one of which can be solved by the diagonalization technique, and consequently an efficient parallel-in-time algorithm originally developed for direct problem is applicable. Our proposed method is of much lower complexity than the standard solver for the corresponding linear system. Finally, some numerical examples are presented to verify the efficiency of our proposed method.\",\"PeriodicalId\":50275,\"journal\":{\"name\":\"Inverse Problems\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6420/ad1131\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad1131","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种处理后向扩散过程的双参数正则化方案。考虑到 Yosida 近似对 PDE 的平滑作用,我们提出通过同时用一个伪抛物方程和一个准边界条件来修正原始受控系统,从而对这个问题进行正则化,修正后的系统包含两个正则化参数。从理论上讲,在精确解的先验正则性假设下,我们通过正则化参数的适当选择策略,建立了正则化解和精确解之间的最优误差估计。此外,还研究了基于差异原理的正则化参数先验选择策略。为了减小用有限差分方案求解离散非对称线性正则化系统的高计算成本,特别是在空间维度较高的情况下,我们采用了块分而治之法和舒尔补集的特性,将线性系统分解为两个半大小的线性系统,其中一个可通过对角化技术求解,从而适用于最初为直接问题开发的高效并行实时算法。我们提出的方法比相应线性系统的标准求解器复杂得多。最后,我们列举了一些数值示例来验证我们提出的方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double-parameter regularization for solving the backward diffusion problem with parallel-in-time algorithm
We propose a double-parameter regularization scheme for dealing with the backward diffusion process. Considering the smoothing effect of Yosida approximation for PDE, we propose to regularize this ill-posed problem by modifying original governed system in terms of a pseudoparabolic equation together with a quasi-boundary condition simultaneously, which consequently contains two regularizing parameters. Theoretically, we establish the optimal error estimates between the regularizing solution and the exact one in terms of suitable choice strategy for the regularizing parameters, under a-priori regularity assumptions on the exact solution. The a-posteriori choice strategy for the regularizing parameters based on the discrepancy principle is also studied. To weaken the heavy computational cost for solving the discrete nonsymmetric linear regularizing system by finite difference scheme, especially in higher spatial dimensional cases, the block divide-and-conquer method together with the properties of the Schur complement is applied to decompose the linear system into two half-size linear systems, one of which can be solved by the diagonalization technique, and consequently an efficient parallel-in-time algorithm originally developed for direct problem is applicable. Our proposed method is of much lower complexity than the standard solver for the corresponding linear system. Finally, some numerical examples are presented to verify the efficiency of our proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems
Inverse Problems 数学-物理:数学物理
CiteScore
4.40
自引率
14.30%
发文量
115
审稿时长
2.3 months
期刊介绍: An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution. As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others. The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信