透析法提纯碳纳米材料的结构效应

IF 9.9 2区 材料科学 Q1 Engineering
{"title":"透析法提纯碳纳米材料的结构效应","authors":"","doi":"10.1016/j.nanoms.2023.12.002","DOIUrl":null,"url":null,"abstract":"<div><p>Dialysis plays a crucial role in the purification of nanomaterials but its impact on the structural properties of carbon nanomaterials was never investigated. Herein, a carbon-based nanomaterial generated electrochemically in potassium phosphate buffer, was characterized before and after dialysis against pure water. It is shown that dialysis affects the size of the carbon domains, structural organization, surface functionalization, oxidation degree of carbon, and grade of amorphicity. Accordingly, dialysis drives the nanomaterial organization from discrete roundish carbon domains, with sizes ranging from 70 to 160 nm, towards linear stacking structures of small nanoparticles (&lt;15 ​nm). In parallel, alcohol and ether (epoxide) surface groups evolve into more oxidized carbon groups (e.g., ketone and ester groups). Investigation of the as-prepared nanomaterial by electron paramagnetic resonance (EPR) revealed a resonance signal consistent with carbon-oxygen centred radicals.</p><p>Additionally, this study brings to light the selective affinity of the carbon nanomaterial under study to capture Na<sup>+</sup> ions, a property greatly enhanced by the dialysis process, and its high ability to trap oxygen, particularly before dialysis. These findings open new perspectives for the application of carbon-based nanomaterials and raise awareness of the importance of structural changes that can occur during the purification of carbon-based nanomaterials.</p></div>","PeriodicalId":33573,"journal":{"name":"Nano Materials Science","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258996512300079X/pdfft?md5=8193052ee0297268166bc2e9c62884b0&pid=1-s2.0-S258996512300079X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Structural effects induced by dialysis-based purification of carbon nanomaterials\",\"authors\":\"\",\"doi\":\"10.1016/j.nanoms.2023.12.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dialysis plays a crucial role in the purification of nanomaterials but its impact on the structural properties of carbon nanomaterials was never investigated. Herein, a carbon-based nanomaterial generated electrochemically in potassium phosphate buffer, was characterized before and after dialysis against pure water. It is shown that dialysis affects the size of the carbon domains, structural organization, surface functionalization, oxidation degree of carbon, and grade of amorphicity. Accordingly, dialysis drives the nanomaterial organization from discrete roundish carbon domains, with sizes ranging from 70 to 160 nm, towards linear stacking structures of small nanoparticles (&lt;15 ​nm). In parallel, alcohol and ether (epoxide) surface groups evolve into more oxidized carbon groups (e.g., ketone and ester groups). Investigation of the as-prepared nanomaterial by electron paramagnetic resonance (EPR) revealed a resonance signal consistent with carbon-oxygen centred radicals.</p><p>Additionally, this study brings to light the selective affinity of the carbon nanomaterial under study to capture Na<sup>+</sup> ions, a property greatly enhanced by the dialysis process, and its high ability to trap oxygen, particularly before dialysis. These findings open new perspectives for the application of carbon-based nanomaterials and raise awareness of the importance of structural changes that can occur during the purification of carbon-based nanomaterials.</p></div>\",\"PeriodicalId\":33573,\"journal\":{\"name\":\"Nano Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S258996512300079X/pdfft?md5=8193052ee0297268166bc2e9c62884b0&pid=1-s2.0-S258996512300079X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Materials Science\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S258996512300079X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Materials Science","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258996512300079X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

透析在纳米材料的纯化过程中起着至关重要的作用,但透析对碳纳米材料结构特性的影响却从未被研究过。本文对在磷酸二氢钾缓冲液中电化学生成的碳基纳米材料进行了透析前后的表征。结果表明,透析会影响碳域的大小、结构组织、表面功能化、碳的氧化程度和非晶态等级。因此,透析促使纳米材料的组织结构从离散的圆形碳域(大小从 70 纳米到 160 纳米不等)向小纳米颗粒(15 纳米)的线性堆叠结构转变。与此同时,醇和醚(环氧化物)表面基团演变成更氧化的碳基团(如酮和酯基团)。此外,这项研究还揭示了所研究的碳纳米材料捕获 Na+ 离子的选择性亲和力(这一特性在透析过程中得到了极大增强),以及其捕获氧气的高能力,尤其是在透析之前。这些发现为碳基纳米材料的应用开辟了新的前景,并提高了人们对碳基纳米材料纯化过程中可能发生的结构变化的重要性的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural effects induced by dialysis-based purification of carbon nanomaterials

Dialysis plays a crucial role in the purification of nanomaterials but its impact on the structural properties of carbon nanomaterials was never investigated. Herein, a carbon-based nanomaterial generated electrochemically in potassium phosphate buffer, was characterized before and after dialysis against pure water. It is shown that dialysis affects the size of the carbon domains, structural organization, surface functionalization, oxidation degree of carbon, and grade of amorphicity. Accordingly, dialysis drives the nanomaterial organization from discrete roundish carbon domains, with sizes ranging from 70 to 160 nm, towards linear stacking structures of small nanoparticles (<15 ​nm). In parallel, alcohol and ether (epoxide) surface groups evolve into more oxidized carbon groups (e.g., ketone and ester groups). Investigation of the as-prepared nanomaterial by electron paramagnetic resonance (EPR) revealed a resonance signal consistent with carbon-oxygen centred radicals.

Additionally, this study brings to light the selective affinity of the carbon nanomaterial under study to capture Na+ ions, a property greatly enhanced by the dialysis process, and its high ability to trap oxygen, particularly before dialysis. These findings open new perspectives for the application of carbon-based nanomaterials and raise awareness of the importance of structural changes that can occur during the purification of carbon-based nanomaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Materials Science
Nano Materials Science Engineering-Mechanics of Materials
CiteScore
20.90
自引率
3.00%
发文量
294
审稿时长
9 weeks
期刊介绍: Nano Materials Science (NMS) is an international and interdisciplinary, open access, scholarly journal. NMS publishes peer-reviewed original articles and reviews on nanoscale material science and nanometer devices, with topics encompassing preparation and processing; high-throughput characterization; material performance evaluation and application of material characteristics such as the microstructure and properties of one-dimensional, two-dimensional, and three-dimensional nanostructured and nanofunctional materials; design, preparation, and processing techniques; and performance evaluation technology and nanometer device applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信