给定换元长度的大地线计数

IF 1.2 2区 数学 Q1 MATHEMATICS
Viveka Erlandsson, Juan Souto
{"title":"给定换元长度的大地线计数","authors":"Viveka Erlandsson, Juan Souto","doi":"10.1017/fms.2023.114","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001147_inline1.png\" /> <jats:tex-math> $\\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a closed hyperbolic surface. We study, for fixed <jats:italic>g</jats:italic>, the asymptotics of the number of those periodic geodesics in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001147_inline2.png\" /> <jats:tex-math> $\\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> having at most length <jats:italic>L</jats:italic> and which can be written as the product of <jats:italic>g</jats:italic> commutators. The basic idea is to reduce these results to being able to count critical realizations of trivalent graphs in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509423001147_inline3.png\" /> <jats:tex-math> $\\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the appendix, we use the same strategy to give a proof of Huber’s geometric prime number theorem.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Counting geodesics of given commutator length\",\"authors\":\"Viveka Erlandsson, Juan Souto\",\"doi\":\"10.1017/fms.2023.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001147_inline1.png\\\" /> <jats:tex-math> $\\\\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a closed hyperbolic surface. We study, for fixed <jats:italic>g</jats:italic>, the asymptotics of the number of those periodic geodesics in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001147_inline2.png\\\" /> <jats:tex-math> $\\\\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula> having at most length <jats:italic>L</jats:italic> and which can be written as the product of <jats:italic>g</jats:italic> commutators. The basic idea is to reduce these results to being able to count critical realizations of trivalent graphs in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509423001147_inline3.png\\\" /> <jats:tex-math> $\\\\Sigma $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the appendix, we use the same strategy to give a proof of Huber’s geometric prime number theorem.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2023.114\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2023.114","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 $\Sigma $ 是一个封闭的双曲面。对于固定的 g,我们研究在 $\Sigma $ 中最长为 L 的周期性大地线的数量的渐近性,这些大地线可以写成 g 换向器的乘积。其基本思想是将这些结果简化为能够计算 $\Sigma $ 中三价图的临界实现。在附录中,我们用同样的策略给出了胡贝尔几何素数定理的证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting geodesics of given commutator length
Let $\Sigma $ be a closed hyperbolic surface. We study, for fixed g, the asymptotics of the number of those periodic geodesics in $\Sigma $ having at most length L and which can be written as the product of g commutators. The basic idea is to reduce these results to being able to count critical realizations of trivalent graphs in $\Sigma $ . In the appendix, we use the same strategy to give a proof of Huber’s geometric prime number theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信