Dayong An, Yao Xiao, Xinxi Liu, Huan Zhao, Xifeng Li, Jun Chen
{"title":"微激光束粉末床熔融技术在 316L 不锈钢中形成两种截然不同的细胞结构","authors":"Dayong An, Yao Xiao, Xinxi Liu, Huan Zhao, Xifeng Li, Jun Chen","doi":"10.1080/21663831.2023.2292076","DOIUrl":null,"url":null,"abstract":"Micro-laser beam powder-bed-fusion (µL-PBF) technique offers the capability to fabricate metallic components with enhanced surface quality and geometrical accuracy through refinement of processing ...","PeriodicalId":18291,"journal":{"name":"Materials Research Letters","volume":"37 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of two distinct cellular structures in 316L stainless steel fabricated by micro-laser beam powder-bed-fusion\",\"authors\":\"Dayong An, Yao Xiao, Xinxi Liu, Huan Zhao, Xifeng Li, Jun Chen\",\"doi\":\"10.1080/21663831.2023.2292076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro-laser beam powder-bed-fusion (µL-PBF) technique offers the capability to fabricate metallic components with enhanced surface quality and geometrical accuracy through refinement of processing ...\",\"PeriodicalId\":18291,\"journal\":{\"name\":\"Materials Research Letters\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/21663831.2023.2292076\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/21663831.2023.2292076","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Formation of two distinct cellular structures in 316L stainless steel fabricated by micro-laser beam powder-bed-fusion
Micro-laser beam powder-bed-fusion (µL-PBF) technique offers the capability to fabricate metallic components with enhanced surface quality and geometrical accuracy through refinement of processing ...
期刊介绍:
Materials Research Letters is a high impact, open access journal that focuses on the engineering and technology of materials, materials physics and chemistry, and novel and emergent materials. It supports the materials research community by publishing original and compelling research work. The journal provides fast communications on cutting-edge materials research findings, with a primary focus on advanced metallic materials and physical metallurgy. It also considers other materials such as intermetallics, ceramics, and nanocomposites. Materials Research Letters publishes papers with significant breakthroughs in materials science, including research on unprecedented mechanical and functional properties, mechanisms for processing and formation of novel microstructures (including nanostructures, heterostructures, and hierarchical structures), and the mechanisms, physics, and chemistry responsible for the observed mechanical and functional behaviors of advanced materials. The journal accepts original research articles, original letters, perspective pieces presenting provocative and visionary opinions and views, and brief overviews of critical issues.