基于 AOS-GCN-LSTM 模型预测变电站开关操作产生的空间电场

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Jinpeng Shi, Donglai Wang, Yan Zhao, Chengze Li, Aijun Zhang
{"title":"基于 AOS-GCN-LSTM 模型预测变电站开关操作产生的空间电场","authors":"Jinpeng Shi, Donglai Wang, Yan Zhao, Chengze Li, Aijun Zhang","doi":"10.3233/jae-230089","DOIUrl":null,"url":null,"abstract":"The radiation of adjacent field sources has a specific spatial correlation. In order to suppress electromagnetic disturbance and improve the electromagnetic compatibility of secondary equipment, the electric field’s spatial coupling characteristics and distribution law should be mastered. Therefore, a method for predicting the spatial electric field generated by substation switching operation based on the Atomic Orbital Search-Graph Convolution Network- Long and Short-Term Memory (AOS-GCN-LSTM) model is presented to deal with this problem. First, the GCN is used to construct graph data according to node characteristics and topology information. The feature selection uses the Maximum Information Coefficient (MIC) to extract the spatial correlation of the adjacent field source radiation. At the same time, the LSTM is used to capture the temporal correlation characteristics of different position field strengths in space. Then, the AOS is used to optimize the model with a hyperparameter. In addition, the simulation data of the full-wave simulation model of the spatial electric field generated by switch operation in a 220 kV GIS substation is an example of verification. The results show that the prediction error of the proposed method is below 3%, and it has strong adaptability to the application environment and good prediction performance.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"13 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting of spatial electric field generated by substation switch operation based on AOS-GCN-LSTM Model\",\"authors\":\"Jinpeng Shi, Donglai Wang, Yan Zhao, Chengze Li, Aijun Zhang\",\"doi\":\"10.3233/jae-230089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The radiation of adjacent field sources has a specific spatial correlation. In order to suppress electromagnetic disturbance and improve the electromagnetic compatibility of secondary equipment, the electric field’s spatial coupling characteristics and distribution law should be mastered. Therefore, a method for predicting the spatial electric field generated by substation switching operation based on the Atomic Orbital Search-Graph Convolution Network- Long and Short-Term Memory (AOS-GCN-LSTM) model is presented to deal with this problem. First, the GCN is used to construct graph data according to node characteristics and topology information. The feature selection uses the Maximum Information Coefficient (MIC) to extract the spatial correlation of the adjacent field source radiation. At the same time, the LSTM is used to capture the temporal correlation characteristics of different position field strengths in space. Then, the AOS is used to optimize the model with a hyperparameter. In addition, the simulation data of the full-wave simulation model of the spatial electric field generated by switch operation in a 220 kV GIS substation is an example of verification. The results show that the prediction error of the proposed method is below 3%, and it has strong adaptability to the application environment and good prediction performance.\",\"PeriodicalId\":50340,\"journal\":{\"name\":\"International Journal of Applied Electromagnetics and Mechanics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Electromagnetics and Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3233/jae-230089\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-230089","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

相邻场源的辐射具有特定的空间相关性。为了抑制电磁干扰,提高二次设备的电磁兼容性,需要掌握电场的空间耦合特性和分布规律。因此,针对这一问题,提出了一种基于原子轨道搜索-图谱卷积网络-长短期记忆(AOS-GCN-LSTM)模型的变电站开关操作产生的空间电场预测方法。首先,利用 GCN 根据节点特征和拓扑信息构建图数据。特征选择使用最大信息系数(MIC)来提取相邻场源辐射的空间相关性。同时,利用 LSTM 捕捉空间中不同位置场强的时间相关性特征。然后,利用 AOS 对模型进行超参数优化。此外,还以 220 kV GIS 变电站开关操作产生的空间电场全波仿真模型的仿真数据为例进行了验证。结果表明,所提方法的预测误差低于 3%,对应用环境的适应性强,预测性能好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting of spatial electric field generated by substation switch operation based on AOS-GCN-LSTM Model
The radiation of adjacent field sources has a specific spatial correlation. In order to suppress electromagnetic disturbance and improve the electromagnetic compatibility of secondary equipment, the electric field’s spatial coupling characteristics and distribution law should be mastered. Therefore, a method for predicting the spatial electric field generated by substation switching operation based on the Atomic Orbital Search-Graph Convolution Network- Long and Short-Term Memory (AOS-GCN-LSTM) model is presented to deal with this problem. First, the GCN is used to construct graph data according to node characteristics and topology information. The feature selection uses the Maximum Information Coefficient (MIC) to extract the spatial correlation of the adjacent field source radiation. At the same time, the LSTM is used to capture the temporal correlation characteristics of different position field strengths in space. Then, the AOS is used to optimize the model with a hyperparameter. In addition, the simulation data of the full-wave simulation model of the spatial electric field generated by switch operation in a 220 kV GIS substation is an example of verification. The results show that the prediction error of the proposed method is below 3%, and it has strong adaptability to the application environment and good prediction performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
4.6 months
期刊介绍: The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are: Physics and mechanics of electromagnetic materials and devices Computational electromagnetics in materials and devices Applications of electromagnetic fields and materials The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics. The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信